Parity Relations in the Reflectivity Basis

Paul Eugenio and Curtis A. Meyer

September 21, 2000

Parity Relations of Production Strengths

We want to consider the photo-production process $\gamma N \to X N'$ and to derive partity relations between the production strengths, V, as seen in the reflectivity basis. These will then be combined with the coresponding decay amplitudes A as cmputed in the reflectivity basis to allow us to compute event weights for our PWA analysis. We start initially with conservation of parity in the helicity frame. For the process $\gamma N \to X N'$, we know that the following relation ship holds.

$$V_{-\lambda_x-\lambda_{N'};-\lambda_\gamma-\lambda_N} \ = \ P_\gamma P_x P_N P_{N'} (-1)^{(J_x+J_{N'}-J_\gamma-J_N)} (-1)^{[(\lambda_\gamma-\lambda_N)-(\lambda_x-\lambda_{N'})]} V_{\lambda_x\lambda_{N'};\lambda_\gamma\lambda_N}$$

The λ_i refer to the helicities of the indicated particles, the J_i refer to the spins of the particles, and the P_i refer to the parity of the particles. This can be simplified by noting first that three of the parities can be eliminated:

$$P_{\gamma}P_{N}P_{N'} = -1.$$

Next, we can eliminate a lot of the spin factors as:

$$(-1)^{J_{N'}-J_{\gamma}-J_{N}} = (-1)^{-J_{\gamma}} = -1.$$

and then we know that the naturality of X is given as:

$$\eta_x = P_x(-1)^{J_x}.$$

Finally, we can also simplify the term involving λ_i . For the case of photo-production we know that $\lambda_{\gamma} = \pm 1$ and also that $\lambda_x = \pm 1$. This means that $\lambda_{\gamma} - \lambda_x = (-2, 0, 2)$, and therefore $(-1)^{(\lambda_{\gamma} - \lambda_x)} = +1$. We can now simplify the parity relationship to:

$$V_{-\lambda_x - \lambda_{N'}; -\lambda_\gamma - \lambda_N} = \eta_x (-1)^{(\lambda_{N'} - \lambda_N)} V_{\lambda_x \lambda_{N'}; \lambda_\gamma \lambda_N}$$

For the case of spin–flip , $\lambda_{N'}-\lambda_N=\pm 1$, while for the case of spin–non–flip , $\lambda_{N'}-\lambda_N=0$ which yields:

$$V_{-\lambda_x - \lambda_{N'}; -\lambda_\gamma - \lambda_N} = -\eta_x V_{\lambda_x \lambda_{N'}; \lambda_\gamma \lambda_N} \text{ spin flip}$$

$$V_{-\lambda_x - \lambda_{N'}; -\lambda_\gamma - \lambda_N} = \eta_x V_{\lambda_x \lambda_{N'}; \lambda_\gamma \lambda_N} \text{ spin nonflip}$$

We can now write these production strengths for the $m_x = \lambda_x$ states in the reflectivity basis for a produced particle of naturality η_x in a reflectivity state ϵ_x . In this case,

$$^{\epsilon}V_{\lambda_N\lambda_{N'}\epsilon_x} = \frac{1}{\sqrt{2}} \left[V_{[\lambda_N\lambda_{N'}\lambda_{\gamma}=+1\lambda_x=+|m_x|]} + \epsilon_x\eta_x(-1)^{|m_x|}V_{[\lambda_N\lambda_{N'}\lambda_{\gamma}=-1\lambda_x=-|m_x|]} \right]$$

Let us now take the case where we only have a spin-flip contributing. In addition, helicity conservation will limit the values of λ_x to be λ_γ . In this case $\lambda_{N'} = -\lambda_N$, and we can write that:

$$\begin{split} ^{\epsilon}V_{\lambda_{N}-\lambda_{N}\epsilon_{x}^{\pm}} &= \frac{1}{\sqrt{2}} \left[V_{[\lambda_{N}-\lambda_{N}\lambda_{\gamma}=+1\lambda_{x}=+1]} - \epsilon_{x}\eta_{x}V_{[\lambda_{N}-\lambda_{N}\lambda_{\gamma}=-1\lambda_{x}=-1]} \right] \\ ^{\epsilon}V_{-\lambda_{N}\lambda_{N}\epsilon_{x}^{\pm}} &= \frac{1}{\sqrt{2}} \left[V_{[-\lambda_{N}\lambda_{N}\lambda_{\gamma}=+1\lambda_{x}=+1]} - \epsilon_{x}\eta_{x}V_{[-\lambda_{N}\lambda_{N}\lambda_{\gamma}=-1\lambda_{x}=-1]} \right] \\ &= \frac{-\eta_{x}}{\sqrt{2}} \left[V_{[\lambda_{N}-\lambda_{N}\lambda_{\gamma}=-1\lambda_{x}=-1]} - \epsilon_{x}\eta_{x}V_{[\lambda_{N}-\lambda_{N}\lambda_{\gamma}=+1\lambda_{x}=+1]} \right] \\ &= \frac{+\epsilon_{x}}{\sqrt{2}} \left[V_{[\lambda_{N}-\lambda_{N}\lambda_{\gamma}=+1\lambda_{x}=+1]} - \epsilon_{x}\eta_{x}V_{[\lambda_{N}-\lambda_{N}\lambda_{\gamma}=-1\lambda_{x}=-1]} \right] \\ ^{\epsilon}V_{-\lambda_{N}\lambda_{N}\epsilon_{x}^{\pm}} &= \epsilon_{x}^{\epsilon}V_{\lambda_{N}-\lambda_{N}\epsilon_{x}^{\pm}} \end{split}$$

For the case of only spin-non-flip contributions, we have that $\lambda_{N'} = \lambda_N$, and we can write that:

$$\begin{split} ^{\epsilon}V_{\lambda_N\lambda_N}\epsilon_x^{\pm} &= \frac{1}{\sqrt{2}} \left[V_{[\lambda_N\lambda_N\lambda_{\gamma}=+1\lambda_x=+1]} - \epsilon_x\eta_x V_{[\lambda_N\lambda_N\lambda_{\gamma}=-1\lambda_x=-1]} \right] \\ ^{\epsilon}V_{-\lambda_N-\lambda_N}\epsilon_x^{\pm} &= \frac{1}{\sqrt{2}} \left[V_{[-\lambda_N-\lambda_N\lambda_{\gamma}=+1\lambda_x=+1]} - \epsilon_x\eta_x V_{[-\lambda_N-\lambda_N\lambda_{\gamma}=-1\lambda_x=-1]} \right] \\ &= \frac{\eta_x}{\sqrt{2}} \left[V_{[\lambda_N\lambda_N\lambda_{\gamma}=-1\lambda_x=-1]} - \epsilon_x\eta_x V_{[\lambda_N\lambda_N\lambda_{\gamma}=+1\lambda_x=+1]} \right] \\ &= \frac{-\epsilon_x}{\sqrt{2}} \left[V_{[\lambda_N\lambda_N\lambda_{\gamma}=+1\lambda_x=+1]} - \epsilon_x\eta_x V_{[\lambda_N\lambda_N\lambda_{\gamma}=-1\lambda_x=-1]} \right] \\ ^{\epsilon}V_{-\lambda_N-\lambda_N}\epsilon_x^{\pm} &= -\epsilon_x^{\epsilon}V_{\lambda_N\lambda_N}\epsilon_x^{\pm} \end{split}$$

The Photon Spin–Density Matrix

The last part is to rotate the spin-density matrix of the photon from the helicity frame, $\rho_{\lambda_{\gamma}\lambda'_{\gamma}}$ to the reflectivity basis $\rho_{\epsilon_{\gamma}\epsilon'_{\gamma}}$. Where $\rho_{\lambda_{\gamma}\lambda'_{\gamma}} = |\lambda_{\gamma}\rangle \langle \lambda'_{\gamma}|$. To do this, we recall that the basis states can be transformed as:

$$<\epsilon_{\gamma} \mid = \frac{1}{\sqrt{2}} \left[<\lambda = +1 \mid +\epsilon_{\gamma} \eta_{\gamma} (-1)^{|m_{\gamma}|} < \lambda = -1 \mid \right]$$

$$= \frac{1}{\sqrt{2}} \left[<\lambda = +1 \mid -\epsilon_{\gamma} < \lambda = -1 \mid \right]$$

$$<\epsilon_{\gamma} = +1 \mid = \frac{1}{\sqrt{2}} \left[<\lambda = +1 \mid -<\lambda = -1 \mid \right]$$

$$<\epsilon_{\gamma} = -1 \mid = \frac{1}{\sqrt{2}} \left[<\lambda = +1 \mid +<\lambda = -1 \mid \right].$$

There is also a simple relation between the reflectivity states and the linear polarization states, $|\epsilon_{\gamma}=+1>=|x>$ and $|\epsilon_{\gamma}=-1>=-i|y>$. We can now multiply

out to obtain the four elements of the spin-density matrix in the reflectivity basis.

$$\rho_{++} = \frac{1}{2} \left[\rho_{11} - \rho_{1-1} - \rho_{-11} + \rho_{-1-1} \right]
\rho_{+-} = \frac{1}{2} \left[\rho_{11} + \rho_{1-1} - \rho_{-11} - \rho_{-1-1} \right]
\rho_{-+} = \frac{1}{2} \left[\rho_{11} - \rho_{1-1} + \rho_{-11} - \rho_{-1-1} \right]
\rho_{--} = \frac{1}{2} \left[\rho_{11} + \rho_{1-1} + \rho_{-11} + \rho_{-1-1} \right]$$

We also know that $\rho_{11} + \rho_{-1-1} = +1$ and that $\rho_{-1+1} = \rho_{+1-1}$. Using this, we can simplify the spin-density matrix as follows:

$$\rho_{\epsilon_{\gamma}\epsilon'_{\gamma}} = \begin{pmatrix} \begin{bmatrix} \frac{1}{2} - \rho_{1-1} \end{bmatrix} & \begin{bmatrix} \frac{1}{2} - \rho_{-1-1} \end{bmatrix} \\ \begin{bmatrix} \frac{1}{2} - \rho_{-1-1} \end{bmatrix} & \begin{bmatrix} \frac{1}{2} + \rho_{1-1} \end{bmatrix} \end{pmatrix}$$

For the case of an unpolarized photon, we know that $\rho_{11} = \rho_{-1-1} = \frac{1}{2}$ and that $\rho_{1-1} = \rho_{-11} = 0$. This means that the spin-density matrix is as expected:

$$\rho_{\epsilon_{\gamma}\epsilon'_{\gamma}} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}.$$

For the case of linearly polarized photons, we know that $\rho_{1-1} = \frac{1}{2}\cos 2\alpha$ where α is the angle between the polarization vector and the normal to the production plane as seen in the Gottfried Jackson frame. In addition, $\rho_{11} = \frac{1}{2}(1 + \sin 2\alpha)$ and $\rho_{-1-1} = \frac{1}{2}(1 - \sin 2\alpha)$. This allows us to simplify the spin-density matrix to:

$$\rho_{\epsilon_{\gamma}\epsilon'_{\gamma}} = \begin{pmatrix} \sin^{2}\alpha & \frac{1}{2}\sin 2\alpha \\ \frac{1}{2}\sin 2\alpha & \cos^{2}\alpha \end{pmatrix}.$$

Specific Examples

Now, for the case of a_2 production via π exchange, there are four complex production amplitudes, $V_{[\lambda_N-\lambda_N\epsilon_x]}$. There are two possible spin-flips for each of the two reflectivity. However, parity will reduce this down to two complex production strengths, $V_{[-1,1,+]} = V_{[1,-1,+]}$ and $V_{[-1,1,-]} = -V_{[1,-1,-]}$. If we write $A^+_{|m|=1} \left[a_2 \to \rho \pi\right]$ and $A^-_{|m|=1} \left[a_2 \to \rho \pi\right]$ as the decay amplitudes for the two reflectivity states of the a_2 , then the weight for a particular event is given as:

$$w = 2 \left\{ \rho_{++} \mid V_{[-1,1,+]} A^{+}_{|m|=1} \left[a_{2} \to \rho \pi \right] \mid^{2} + \rho_{--} \mid V_{[-1,1,-]} A^{-}_{|m|=1} \left[a_{2} \to \rho \pi \right] \mid^{2} \right.$$

$$\left. + \rho_{+-} \left(V_{[-1,1,+]} A^{+}_{|m|=1} \left[a_{2} \to \rho \pi \right] \right)^{*} \left(V_{[-1,1,-]} A^{-}_{|m|=1} \left[a_{2} \to \rho \pi \right] \right) \right.$$

$$\left. + \rho_{-+} \left(V_{[-1,1,-]} A^{-}_{|m|=1} \left[a_{2} \to \rho \pi \right] \right)^{*} \left(V_{[-1,1,+]} A^{+}_{|m|=1} \left[a_{2} \to \rho \pi \right] \right) \right\}$$

Using the density matrix from above and noting the fact that $a^*b + b^*a = 2\text{Re}(ab)$, we can somewhat simplify the above expression to be proportional to:

$$w = \sin^2 \alpha |R^+|^2 + \cos^2 \alpha |R^-|^2 + \sin \alpha \cos \alpha \text{Re}(R^+R^-)$$

Where R^{\pm} is the product of V^{\pm} times A^{\pm} .