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Parity Relations of Production Strengths

We want to consider the photo-production process YN — X N’ and to derive partity
relations between the production strengths, V', as seen in the reflectivity basis.
These will then be combined with the coresponding decay amplitudes A as cmputed
in the reflectivity basis to allow us to compute event weigths for our PWA analysis.
We start initially with conservation of parity in the helicity frame. For the process
YN — X N', we know that the following relation ship holds.
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The A; refer to the helicities of the indicated particles, the .J; refer to the spins of
the particles, and the P; refer to the parity of the particles. This can be simplified
by noting first that three of the parities can be eliminated:

P,PyPy = —1.
Next, we can eliminate a lot of the spin factors as:
(=1)w=hIN = (—1)7h = -1
and then we know that the naturality of X is given as:
e = Pa(=1)".

Finally, we can also simplify the term involving );. For the case of photo-production
we know that A, = £1 and also that A, = £1. This means that A, — X, = (—2,0, 2),
and therefore (—1)*~*+) = 41, We can now simplify the parity relationship to:
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For the case of spin—flip , Ay — Ay = %1, while for the case of spin—non-flip |,
An' — Ay = 0 which yields:

V—)\x—)\N,;—)\A,—)\N = _nxVAmAN,;)\A,)\N spin flip

Ve dyi=r-Ax = MzVaoayaay sPinnonflip

We can now write these production strengths for the m, = A, states in the reflec-
tivity basis for a produced particle of naturality 7, in a reflectivity state €,. In this
case,
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Let us now take the case where we only have a spin-flip contributing. In addition,
helicity conservation will limit the values of A; to be A,. In this case Ay» = — Ay,
and we can write that:
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For the case of only spin-non-flip contributions, we have that A\y» = Ay, and we can
write that:
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The Photon Spin—Density Matrix

The last part is to rotate the spin—density matrix of the photon from the helicity
frame, py,x to the reflectivity basis pe, . Where py =[ Ay >< A |. To do this,
we recall that the basis states can be transformed as:
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There is also a simple relation between the reflectivity states and the linear polar-
ization states, | e, = +1 >=| 2 > and | ¢, = =1 >= —i | y >. We can now multiply
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out to obtain the four elements of the spin—density matrix in the reflectivity basis.

1

P+ = 5 [p11 — pro1 — po11 + poii]
1

Pr— = 5 [p11 + pro1 — p—11 — p-1-1]
1

p—+ = B [p11 — p1o1 + p_11 — p—1-1]
1

p— = B (P11 + P11 + p_11 + p-1-1]

We also know that pi;; + p-1-1 = +1 and that p 141 = p41-1. Using this, we can
simplify the spin-density matrix as follows:

poe, = ( [t - pi-i] [%—p_1_1]>

G=raa] [3+0]

For the case of an unpolarized photon, we know that p;; = p_ 1 1 = 5 and that

1
2
pi—1 = p—11 = 0. This means that the spin—density matrix is as expected:

0
Peyer, = 1 -
2

For the case of linearly polarized photons, we know that p;_; = %cos 2o where
« is the angle between the polarization vector and the normal to the production
plane as seen in the Gottfried Jackson frame. In addition, p;; = 3(1 + sin 2c) and
Pl 1= %(1 — sin 2a). This allows us to simplify the spin-density matrix to:

sin? o % sin 2«
U == . .
Peye, % sin2a  cos? o
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Specific Examples

Now, for the case of ay production via 7 exchange, there are four complex pro-
duction amplitudes, V], aye,]- There are two possible spin-flips for each of the
two reflectivity. However, parity will reduce this down to two complex production
strengths, V1147 = Vii,1,47 and Vio11,] = — V1,1, If we write Altnlzl [ay — p7]
and A7 _, [ay — pr] as the decay amplitudes for the two reflectivity states of the
a9, then the weight for a particular event is given as:

w = 2 {P++ | V[—1,1,+}A|J;n\:1 [ag — pr] [ +p__ | Vic1,1,1 4 21 laz = pr] k
+ P+7(V[71,1,+]A|fn\:1 las — pﬂ-])*(‘/[*lal,*]Aﬁn\zl [az — p])
+ ot (Vien, A o la2 = 7)) (Vi1 Al 2 a2 = pr)) }

Using the density matrix from above and noting the fact that a*b + b*a = 2Re(ab),
we can somewhat simplify the above expression to be proportional to:

w = sin’a|R"|* +cos’a | R™ |* +sinacosaRe(RTR™)

Where R¥ is the product of V* times A%,



