HDDM - Hall D Data Model

Richard Jones
University of Connecticut

September 21, 2003

request for comments, draft 1.1
updated from draft 1.0, May 25, 2001

Abstract

The GlueX experiment has adopted a policy that all shared data should be described in xml. A
set of tools has been developed that enable programmers to respect this policy without the overhead of
having to do building and parsing of xml documents in user code. The data are described in terms of
data model structured like an xml document. The general rules for building such model documents is
called the HDDM specification. Once a user has described the data model in xml, tools are provided to
translate the model into c structures, xml schema, and a general-purpose i/o library.

1 Background

The workflow model for GlueX offline analysis is shown in Fig. 1. It is important even at an early stage in
the experiment to consider carefully critical elements of the software framework in which these components
operate. One critical aspect of the framework is the way the data are represented at intermediate stages
in the pipeline. The collaboration made an early decision to describe all such data in xml. This choice
brings with it the advantages of a host of automated tools and libraries in the public domain for parsing
and searching xml documents. However it also demands careful design so that the additional software layers
introduced do not impose unintended restrictions on the client programs.

A search on the web recently turned up a number of interesting projects in which other groups are attempting
to do the same or similar things. Two projects stand out as most interesting from the point of view of GlueX,
the BinX project [1] supported by the University of Edinburgh and the HFS project [2] supported by NCSA,
Urbana.

BinX is still in its infancy. None of the tools or libraries described in the reference document appear to
be available for downloading at the time of of this writing. However from the description given, some
observations can be made. The aim is to provide a general metadata format for describing just about any
binary data file. The authors start from the premise that storing and retrieving data files in xml format does
not make sense, and proceed to the conclusion that one never needs to actually express them in xml. Thus
their goal appears to be to use the xml as a sort of documentation facility that is separate from the actual
process of handling and interpreting the data. This approach makes the most sense when one is dealing with
a set of i/o libraries and file formats that are already in place, and wants to introduce a metadata description
after the fact. In GlueX we have the possibility of starting out using the xml in the design process, and
having the other pieces automatically created from the xml. BinX adds the metadata as a new layer on top
of, and independent from, the layer in which programs actually process data, and as such it looks more like a
retrofit tool than an integrated model component. However it is still new and seems to have some resources
behind it, so GlueX developers should follow it with interest.

The Hierarchical Data Format HDF is much older, by contrast, and seems to already have established a base
of scientific users. The design appears to be oriented around the need to archive large multi-dimensioned
arrays, such as images. Its origins date back to the mid-1990’s before the advent of xml and reflects that
fact in the frequent references to storing and recovering data from fortran programs, but it is being actively
developed and in version 5 (HDF5) they have included new functionality to describe data in xml. There are
also java tools in the distribution, that probably reflects the fact that support for scientific programming
in java is on the rise. The primary concern regarding the potential usefulness of HFS to GlueX is the
complexity of the data model and the program interface. This package is designed to do much more than is
needed by GlueX. For example, the ability to delete arbitrary objects from existing data files, or add new
ones, complicates the i/o library considerably over what is needed for HEP data streams. The number of
operations that are required to set up a new data file are considerable, compared with the simple opens and
writes to which HEP programmers are accustomed. From the point of view of design, multi-dimensioned
arrays are not the most appropriate structure for expressing much of the content of a GlueX event. While it
could probably be made to work for GlueX, it appears that HDF would be overkill for this problem. Thus
there is still good reason to carry on the earlier development of a xml data model for GlueX.

Monte Carlo Data Acquisition

‘ reaction specification l | digit zed signals in buffers I

i i
genericon event building

v v

| final state ' | raw & vent record l

& i =ticn A T
Lp hits -

geometric econstruchon

trocks Aclusters

kinemaic oonstrection

Fig. 1: The conceptual data model for GlueX begins with a physics event, coming either from the detector
or a Monte Carlo program, which builds up internal structure as it flows through the analysis pipeline. The
data model specifies the elements of information that are contained in a view of the event at each stage and
the relationships between them. The implementation provides standard methods for creating, storing and
accessing the information.

2 (General Notes

1. At each stage (lower-case items in diagram) in the pipeline one has a unique view of the event.
2. To each of these is associated a unique data model that expresses the event in that view.

3. GlueX policy is to use xml to describe all of our shared data, which means any data that might be
passed as input to a program or produced as output. This does not mean that all data records are
represented as plain-text files, but that to each data file or i/o port is attached some metadata that a
tool can use to automatically express all of its contents in the form of a plain-text xml document.

4. This policy is interpreted to mean that to each data file or i/o port of a program is associated a xml
schema that defines the data structure that the program expects or produces. The schemas should be

10.

11.

12.

13.

14.

15.

16.

either bundled with the distribution of the program, or published on the web and indicated by links
in the Readme file.

Any xml document should be accepted as input to a program if it is valid according to the schema
associated to that input port.

In practice, this last requirement adds significant of overhead to the task of writing a simple analysis
program, because it must be capable of parsing general xml documents as input. In addition to this
overhead imposed on the program code itself, the author must also produce schemas for each input or
output port or file accessed by the program.

The purpose of the Hall D Data Model (HDDM) is to simplify the programmer’s task by providing
automatic ways to generate schemas and providing i/o libraries to standardize input and output of
data in the form of xml-described files.

HDDM consists of a specification supported by a set of tools to assist its implementation. The specifi-
cation is a set of rules that a programmer must obey in constructing schemas in order for them to be
supported by the tools. The tools include an automatic schema generator and an i/o library builder
for ¢ and c++.

The HDDM specification was designed to enable the construction of an efficient i/o library. It was
assumed in the design that users could not afford a general xml-parsing cycle every time an event is
read in or written out by a program. It was also assumed that serializing data in plain-text xml is too
expensive in terms of bandwidth and storage. Using the HDDM tools, users can efficiently pass data
between programs in a serialized binary stream, and convert to/from plain-text xml representations
using a translation tool when desired.

Programmers are not obligated to use HDDM tools to work in the GlueX software framework. If they
provide their own schema for each file or i/o port used by the program and accept any xml that respects
their input schema then they are within the agreed framework.

The HDDM tools are presently implemented in ¢ and c¢++, so programmers wishing to work in java
have more work to do. However, they will find it easy to interface to other programs that do use the
HDDM libraries because they provide for the correct reading and writing of valid xml files and the
automatic generation of schemas that describe them.

The hddm-c tool automatically constructs a set of c-structures based on xml metadata that can be
used to express the data in memory. It also builds an i/o library that can be called by user code to
serialize/deserialize these structures.

The serialized data format supported by hddm-c consists of a xml header in plain text that describes
the structure and contents of the file, followed by a byte string that is a reasonably compact serialization
of the structured data in binary form. Such hddm files are inherently self-describing. The overhead
of including the metadata in the stream with the data is negligible.

The hddm-xml tool extracts the xml metadata from a hddm file header and expresses the data stored
in the file in the form of a plain-text xml document.

The hddm-schema tool extracts the xml metadata from a hddm file header and generates a schema
that describes the structure of the data in the file. The schema produced by hddm-schema will
always validate the document produced by hddm-xml when both act on the same hddm file. More
significantly, the schema can be used to check the validity of other xml data that originate from a
different source.

The xml-hddm tool reads an xml document and examines its schema for compliance with the HDDM
specification. If successful, it parses the xml file and converts it into hddm format.

17.

18.

19.

20.

21.

22.

23.

The schema-hddm tool reads a schema and checks it for compliance with the HDDM specification.
If successful, it parses it into the form of a hddm file consisting of the header only and no data. Such
a data-less hddm file is also called a “template” (see below).

Note that the hddm-xml , hddm-schema , and hddm-c tools can act on any hddm data file written
by any program, even if the code that produced the data is no longer available. This is because
sufficient metadata is provided in the schema header to completely reconstruct the file’s contents in
xml, or instantiate it in c-structures.

A tool called xml-xml has been included in the tool set as a simple means to validate an arbitrary
xml document against a dtd or schema, and reformat it with indentation to make it easier to read.

Tools called stdhep2hddm and hddm2stdhep provide conversion between the hddm data stream
and the STDHEP format used by HDFast. This is an example where a user program achieves xml i/o
by employing translators, in this case a two-stage pipeline.

In spite of the array of tools described above, the programmer still must do the work of describing the
structure and contents of the data expected or produced by his program. He may do this in one of
two ways: either he constructs an original schema describing his data, or he creates an original xml
template of his data and then generates the schema using hddm-schema .

Since schemas are rather verbose and repetitive, the suggested method is to create a template first,
use hddm-schema to transform it into a basic HDDM schema, and then add facets to the schema
to enrich the minimal set of metadata generated from the template. This method has the advantage
that one starts off with a basic schema that is known to conform to the rules for HDDM schemas (see
below) so it is relatively simple thereafter to stay within the specification.

As a shortcut to creating schemas, it is not necessary to do anything more than just create the template.
The basic schema that is generated automatically from the template contains sufficient information to
validate most data, so a programmer can get by without ever learning how to write or modify schemas.

Rules for constructing HDDM templates

. A hddm template is nothing more than a plain-text xml file that mimics the structure of the xml that

the program expects on input or produces on output. In some ways it is like sample data that the
programmer might provide to a user to demonstrate how to use it, although the comparison is not
perfect.

The top element in the template must be <HDDM> and have three required attributes: class , version
, and zmins . The value of the latter must be xmilns="http: //www. gluez. org/hddm” . The values
of the class and version arguments are user-defined. They serve to identify a group of schemas that
share a basic set of tags. See below for more details on classes.

The names of elements below the root <HDDM> element are user-defined, but they must be con-
structed according to the following rules.

. All values in hddm files are expressed as attributes of elements. Any text that appears between tags

in the template is treated as a comment and ignored.

An element may have two information attached to it: child elements which appear as new tags enclosed
between the open and close tags of the parent element, and attributes which appear as key="value”
items inside the open tag.

All quantities in the data model are carried by named attributes of elements. The rest of the document
exists to express the meaning of the data and the relationships between them.

10.

11.

12.

13.

14.

15.

16.
17.

All elements in the model document either hold attributes, contain other elements, or both. Empty
elements are meaningless, and are not allowed.

One way a template is not like sample data is that it does not contain actual numerical or symbolic
values for the fields in the structure. In the place of actual values, the types of the fields are given.
For example, instead of showing energy="12.5 as might be shown for sample data, the template would
show in this position energy="float” or energy="double” .

The complete list of allowed types supported by hddm is “int”, “long”, “float”, “double”, “boolean”,
“string” and “Particle_t”. The Particle_t type is a value from an enumerated list of capitalized names
of physical particles. The int type is a 32-bit signed integer, and long is a 64-bit signed integer. The
other cases are obvious.

Attributes in the template that do not belong to this list are assumed to be constants. Constants are
sometimes useful for annotating the xml record. The must have the same value for all instances of the
element throughout the template.

Any given attribute may appear more than once throughout the template hierarchy. Wherever it
appears, it must appear with identical attributes and with content elements of the same order and

type.

Another difference between a template sample data is that the template never shows a given element
more than once in a given context, even if the given tag would normally the repeated more than once
for an actual sample. One obvious example of this is a physics event, which is represented only once
in the template, but repeated multiple times in a file.

By default, it is assumed that an element appearing in the template must appear in that position exactly
once. If the element is allowed to appear more than once or not at all then additional attributes should
be inserted in the element of the form minOccurs="N1”" and mazOccurs="N2” , where N1 can be
zero or any positive integer and N2 can be any integer no smaller than NI , or set to the string
“unbounded”. Each defaults to 1.

Arrays of simple types are represented by a sequence of elements, each carrying an attribute containing
a single value from the array. This is more verbose than allowing users to include arrays as a simple
space separated string of values, but the chosen method is more apt for expressing parallelism between
related arrays of data.

An element may be used more than once in the model, but it may never appear as a descendent of itself.
Such recursion is complicated to handle and it is hard to think of a situation where it is necessary.

Examples of valid hddm templates are given in the examples section below.

Because templates contain new tags that are invented by the programmer, it is not possible to write a
standard template schema against which a programmer can check his new xml file for use as a template.
Instead of using schema validation, the programmer can use the hddm-schema tool to check a xml file
for correctness as a hddm template. Any errors that occur in the hddm - schema transformation
indicate problems in the xml file that must be fixed before it can be used as a template.

Rules for constructing HDDM schemas

. HDDM schemas must be valid xml schemas, belonging to the namespace http://www.w3.org/2001/

XMLSchema. Not every valid schema is a valid HDDM schema, however, because xml allows for several
different ways to express a given data structure.

GlueX programmers are not obligated to write schemas that conform to the HDDM specification, but
if they do, they have the help of the HDDM tools for efficient file storage and i/o.

10.

11.

12.

13.

14.

15.

In the following specification, a prefix zs: is applied to the names of elements, attributes or datatypes
that belong to the official schema namespace “http://www.w3.org/2001/XMLSchema” , whose meaning
is defined by the xml schema standard. The extensions introduced for the specific needs of GlueX are
assigned to a private namespace called “http://www.gluex.org/hddm” that is denoted by the prefix
hddm: .

. The top element defined by the schema must be <hddm:HDDM> and have three required attributes:

class , version , and zmlins . The value of the latter must be zmins="http: //www. gluex. org/hddm”
. The class and version arguments are of type zs:string and are user-defined. They serve to identify a
group of schemas that share a basic set of tags. See below for more details.

The names of elements below the root <hddm:HDDM> element are user-defined, but they must be
constructed according to the following rules.

An element may have two kinds of content: child elements and attributes, and hence must have
zs:complexType . Elements represent the grouping together of related pieces of data in a hierarchy
of nodes. The actual numerical or symbolic values of individual variables appear as the values of
attributes. Examples are shown below.

All quantities in the data model are carried by named attributes of elements. The rest of the document
exists to express the meaning of the data and the relationships between them.

All elements in the model document either hold attributes, contain other elements, or both. Empty
nodes are meaningless, and are not allowed.

Text content between open and close tags is allowed in documents (type="mized”) but it is treated
as a comment and stripped on translation. Basic HDDM schemas do not use type="mized” elements.

The datatype of an attribute is restricted to a subset of basic types to simplify the task of translation.
Currently the list is zs:int , zs:long , xs:float , zs:double , xs:boolean , xs:string , xzs:anyURI and
hddm:Particle_t . User types that are derived from the above by zs:restriction may also be defined and
used in a HDDM schema.

Attributes must always be either “required” or “fixed”. Default attributes, i.e. those that are sometimes
present inside their host and sometimes not are not allowed. This allows a single element to be treated
as a fixed-length binary object on serialization, which has advantages for efficient i/o.

A datum that is sometimes absent can be expressed in the model by assigning it as an attribute to its
own host element and putting the host element into its parent with minOccurs="0" .

Fixed attributes (with use="fized”) may be attached to user-defined elements. They may be of any
valid schema datatype, not just those listed above, and may be used as comments to qualify the
information contained in the element. Because they have the same value for every instance of the
element, they do not take up space in the binary stream, but they are included explicitly in the output
produced by the hddm-xml translator.

All elements must be globally defined in the schema, i.e. declared at the top level of the zs:schema
element. Child elements are included in the definition of their parents through a ref=tagname reference.
Local definitions of elements inside other elements are not allowed. This guarantees that a given element
has the same meaning and contents wherever it appears in the hierarchy.

Arrays of simple types are represented by a sequence of elements, each carrying an attribute containing
a single value from the array. This is more verbose than allowing a simple list type like is defined
by zs:list , but the chosen method is more apt for expressing parallelism between related arrays of
data, such as frequently occurs in descriptions of physical events. Forbidding the use of simple zs:list
datatypes should encourage programmers to chose the better model, although of course they could just
mimic the habitual use of lists by filling the data tree with long strings of monads!

16.

17.

18.

19.

20.

10.

Elements are included inside their parent elements within a zs:sequence schema declaration. Each
member of the sequence must be a reference to another element with a top-level definition.

A given element may occur only once in a given the sequence, but may have minOccurs and mazOccurs
attributes to indicate possible absence or repetition of the element.

The sequence is the only content organizer allowed by HDDM. More complex organizers are supported
by schema standards, such as all and choice , but their use would complicate the i/o i/o interfaces
that have to handle them and they add little by way of flexibility to the model the way it is currently
defined.

An element may be used more than once in the model, but it may never appear as a descendent of itself.
Such recursion is complicated to handle and it is hard to think of a situation where it is necessary.

A user can check whether a given schema conforms to the HDDM rules by transforming it into a hddm
template document. Any errors that occur during the transformation generate a message indicating
where the specification has been violated.

Class relationships between HDDM schemas

. Two HDDM schemas belong to the same class if all tags that are defined in both have the same set of

attributes in both.

This is a fairly weak condition. It is possible that all data files used in GlueX will belong to the same
class, but it is not required.

If two HDDM schemas belong to the same class then it is possible to form a union schema that will
validate documents of either type by taking the xml union of the two schema documents and changing
any sequence elements in one and not in the other to minOccurs="0" .

The translation tools xml-hddm and hddm-xm]l will work with any HDDM class.

Any program built using the i/o library created with hddm-c is dependent on the class of the schema
used during the build. Any files it writes through this interface will be built on this schema, however
it is able to read any file of the same class without recompilation.

A new schema may be derived from an existing HDDM schema by taking the existing one and adding
new elements to the structure. In this case the version attribute of the HDDM tag should be incre-
mented, while leaving the class attribute unchanged.

A program that was built using the hddm-c tool for its i/o interface can read from any from any hddm
file of the same class as the original schema used during the build. If the content of the file is a superset
of the original schema then nothing has changed. If some elements of the original schema are missing
in the file then the i/o still works transparently, but the c-structures corresponding to the missing
elements will be empty, i.e. zeroed out.

The ¢/c++ i/o library rejects an attempt to read from a hddm file that has a schema of a different
class from the one for which it was built.

No mandatory rules are enforced on the wversion attribute of the hddm file, but it is available to
programs and may be used to select certain actions based on the “vintage” of the data.

Programs that need simultaneous access to multiple classes of hddm files can be built with more than
one i/o library. The structures and i/o interface are defined in separate header files hddm_X .h and
implementation files hddm_X .c, where X is the class letter.

Implementation Notes

. There is a complementarity between xml schemas and the xml templates that express the metadata
in hddm files. Depending on the level of detail desired, schemas may become arbitrarily sophisticated
and complex. On the other hand, only a small subset of that information is needed to support the
functions of the hddm tool set. Templates allow that information to be distilled in a compact form
that is both human-readable and valid xml.

. In the present implementation, the text layout of the template (including the whitespace between the
tags) is used by the hddm tools to simplify the encoding and decoding. There is exactly one tag per
line and two leading spaces per level of indent. This may change in future implementations. This
means that hddm file headers should not be edited by hand.

. The XDR [3] library is used to encode the binary values in the hddm stream. This means that hddm
files are machine-independent, and can be read and written on any machine without any dependence
on whether the machine is little-endian or big-endian. XDR is the network encoding standard library
developed for Sun’s rpc and nfs services. For more info, search for RFC 1014 on the web or do “man
xdr” under linux.

. The binary file format will change. The point is not to fix on some absolute binary format at this early
stage. The only design constraint was that the data model be specified in xml and that the data be
readily converted into plain-text xml, preferably without needing to look up auxiliary files or loading
the libraries that wrote it.

. The design of the i/o library has been optimized for flexibility: the user can request only the part of
the model that is of interest. The entire model does not even have to be present in the file, in which
case only the parts of the tree that are present in the file are loaded into memory, and the rest of the
requested structure is zeroed out.

. The only constraint between the model used in the program and that of the hddm stream is that there
be no collisions, that is tags found in both but with different attributes.

. Two data models with colliding definitions can be used in one program but they have to have different
class Ids. Two streams with different class Ids cannot feed into each other. In any case the xml viewing
tool hddm-zml can read a hddm stream of any class.

Examples

. A simple model of an event fragment describing hits in a time-of-flight wall. It allows for multiple hits
per detector in a single event, with ¢ and dF information for each hit. The hits are ordered by side
(right: end=0, left: end=1) and then by horizontal slab. The minOccurs and maxOccurs attributes
allow those tags to appear any number of times, or not at all, in the given context.

<forwardTOF>
<slab y="float" minOccurs="0" maxOccurs="unbounded">
<side end="int" minOccurs="0" max0Occurs="unbounded">
<hit t="float" dE="float" maxOccurs="unbounded" />
</side>
</slab>
</forwardTOF>

2. A model of the output from an event generator. An example of actual output from genr8 converted to
xml using hddm-xml. Warning: some browsers have difficulty displaying plain xml. Mozilla 1.x and
Internet Explorer 6 give a nice view of the document below.

<?xml version="1.0"7>

<HDDM class="s" version="1.0">
<physicsEvent eventNo="int" runNo="int">
<reaction type="int" weight="float" maxOccurs="unbounded">
<beam type="Particle_t">
<momentum px="float" py="float" pz="float" E="float" />
<properties charge="int" mass="float" />
</beam>
<target type="Particle_t">
<momentum px="float" py="float" pz="float" E="float" />
<properties charge="int" mass="float" />
</target>
<vertex maxOccurs="unbounded">
<product type="Particle_t" decayVertex="int" maxOccurs="unbounded">
<momentum px="float" py="float" pz="float" E="float" />
<properties charge="int" mass="float" />
</product>
<origin vx="float" vy="float" vz="float" t="float" />
</vertex>

</reaction>
</physicsEvent>
</HDDM>

3. A more complex example follows, showing a hits tree for the full detector.

<?7xml version="1.0"7>

<HDDM class="s" version="1.0">

<physicsEvent eventNo="int" runNo="int">

<hitView version="1.0">
<barrelDC>
<cathodeCyl radius="float" minOccurs="0" max0Occurs="unbounded">
<strip sector="int" z="float" minOccurs="0" maxOccurs="unbounded">
<hit t="float" dE="float" maxOccurs="unbounded" />
</strip>
</cathodeCyl>
<ring radius="float" minOccurs="0" maxOccurs="unbounded">
<straw phim="float" minOccurs="0" maxOccurs="unbounded">
<hit t="float" dE="float" minOccurs="0" maxOccurs="unbounded" />
<point z="float" dEdx="float" phi="float"
dradius="float" max0Occurs="unbounded" />
</straw>
</ring>
</barrelDC>

10

<forwardDC>
<package pack="int" minOccurs="0" maxOccurs="unbounded">
<chamber module="int" minOccurs="0" maxOccurs="unbounded">

<cathodePlane layer="int" u="float" minOccurs="0" maxOccurs="unbounded">

<hit t="float" dE="float" minOccurs="0" max0Occurs="unbounded"/>
<cross v="float" z="float" tau="float" maxOccurs="unbounded" />
</cathodePlane>
</chamber>
</package>
</forwardDC>

<startCntr>
<sector sector="float" minOccurs="0" maxOccurs="unbounded">
<hit t="float" dE="float" maxOccurs="unbounded" />
</sector>
</startCntr>

=n

<barrelCal>
<module sector="float" minOccurs="0" maxOccurs="unbounded">
<flash t="float" pe="float" maxOccurs="unbounded" />
</module>
</barrelCal>

<Cerenkov>
<module sector="float" minOccurs="0" max0Occurs="unbounded">
<flash t="float" pe="float" maxOccurs="unbounded" />
</module>
</Cerenkov>

<forwardTOF>
<slab y="float" minOccurs="0" maxOccurs="unbounded">
<side end="int" minOccurs="0" max0Occurs="unbounded">
<hit t="float" dE="float" maxOccurs="unbounded" />
</side>
</slab>
</forwardTOF>

<forwardEMcal>
<row row="int" minOccurs="0" maxOccurs="unbounded">
<column col="int" minOccurs="0" max0Occurs="unbounded">
<flash t="float" pe="float" maxOccurs="unbounded" />
</column>
</row>
</forwardEMcal>
</hitView>
</physicsEvent>
</HDDM>

11

References

[1] “Representing Scientific Data on the Grid with BinX, Binary XML Description
Language”, M. Westhead and M. Bull, TUniversity of Edinburgh, January 2003.
"http://www.epcc.ed.ac.uk/ gridserve/WP5/Binx/sci-data-with-binx.pdf"

[2] ¢‘HDF5 Users’s Guide’’, working draft, July 2003. http://hdf.ncsa.uiuc.edu/HDF5/doc/UG/
[3] ¢‘RFC 1832 (rfc1832) - XDR: External Data Representation standard’’, September 1995.
http://www.fags.org/rfcs/rfc1832.html

This material is based upon work supported by the National Science Foundation under Grant No. 0072416.

12

