Standard M odda M esons

g % gluon

quark

Building blocks: q

T

anti-quark

q

g § a conventional meson
aT

Also allowed in the Standard M odel arethese
non-conventional mesons:

g
glueballs § g
- pure glue, no quarks g
q
hybrids
- with valence glue
q
g
4 - quark states T
- or molecules g
q
g
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Map of the Mesons
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Photons and Meson Spectroscopy

Light Quark Mesons below Charm Threshold

Essentially nothing is known from photoproduction

[J Needed to complement hadroproduction
many open questions remain

Photons are expected to excite:

[ Spin-1 hybrids
[] States rich in ss
[1 Excited vector states

Need to explore mass range from O to cc threshold
[1 Photon beam energy: ultimately - 12 GeV

[J Photon flux - 3 x 108 photons/sec
to achieve stats comparable to p beams

[1 Beam Energy resolution - 0.25% to 0.1%

[1 Hermetic Detector
identify exclusive reaction (for PWA)
measure p, E with good resolution
identify p, K, p
measure final state g's
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Photoproduction
and Meson Spectroscopy

- why is the photon so special ?

Information on meson production comes from
peripheral & central hadroproduction
with (p and K beams)

e"e” and pp annihilations
a9 collisions
J/y radiative decays

This variety of processes necessary to study the meson
spectrum: production and decays are both important.

Data on photoproduction of mesons in the 0-3 GeV mass
range is essentially non-existent. The photon is a very
different probe (a vector or a qq).

At JLab energies, the photon is a sS and is
expected to produce states rich in hidden
strangeness (at FNAL energies photopro-
duction opened the doors to charm spectroscopy).

The photon is expected to create hybrids

with exotic quantum numbers.
A. Dzierba
9/19/98



How Photon Beams Create
Exotic Hybrids

quark spins aligned

photon turns
into qq pair proton

9 Before

/
ground state flux tube
—>
q
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proton
After 9

\

quark spins still aligned

excited flux tul
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Photoproduction of Mesons
Data on meson in the O - 3 GeV range:

Example of state which has been studied in photopro-
duction at SLAC - the a;:
gp® a2(1320)D++

BC-72 at SLAC using 19 GeV photons.

The signal in resonance region contains about 200
events in a 350 MeV window with S/N = 1/1. The
cross-section is about 0.5 pub.

In Hall-D, we expect 380 events/pb/sec with a beam
flux of 3 x 10® photons/sec.

Compared to BC-72, in one day we will see:

16 million events - compared to - 200 events
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Physics Goals

o search for gluonic excitations - notably the spin 1 exotic
hybrids.
The search for these manifestations of glue. The soft gluonic degr ees of
freedom remain completely unexplored. This sector iscrucial to under-
standing the non-Abelian structure of QCD.

o search for multi-quark states and meson molecules.
Thereactionsgo® PPN and gp® VVN will befertileterritory for
such sear ches.

e produce excited states of vector mesons and other conven-
tional mesons.
Thereisadearth of information of these conventional states, e.g. excited
states of ther,wand f, inthelto 3 GeV massregime. Since the low-lying
hybrids and glueballs are expected to populate this regime - and can mix
with conventional states - it will be essential to understand conventional
mesons as well. At these incident energies, diffractive and meson ex-
change processes can be separated - thiswill shed light on the nature of
the pomeron.

e mass produce states rich in hidden strangeness.
This will allow the search for decays of the h, h*, f ., ....

o study the threshold production of charm.
The proposed energy regime straddles the light quark and heavy quark
regimes.

e test chiral symmetry.
The decays of the h and h* provide a laboratory for such tests.

« test CPT invariance.
This will exploit the copious source of f mesons.
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Kinematicsof gp ® Xp
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Effect of t . on Yields

1 a=4 GeV?
0.&
t(max)
< ds 0.5
f= o —dt
dt
t(min) 0.1
0.2
05 _ axgrat
dit|
1 a=8 GeV’
0.a
t(max)
= g 8q o
t(min) dt e
0.2
3
A. Dzierba

9/19/98



Effect of t  on Line Shape
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Beams

Techniques are under consideration to produce photon
beams:

tagged bremsstrahlung beams

[] Can get desired flux near endpoint with 1pA electron beam.
[1 Energy resolution (0.25 to 0.1%) - OK.

[] No linear polarization - just circular - need linear for PWA.

tagged coherent bremsstrahlung beams

[] An attractive possibility.

[] Refers to the enhancement which occurs inside a crystal radiator

when the momentum transfer from the electron to atom matches the
reciprocal lattice vector.

[] Collimation can be used to suppress the incoherent component and
narrow the energy spread of the coherent photon spectrum.

[] Possible to achieve an average linear polarization of 15% in the de-
sired energy range. Falls to zero at endpoint.

Compton backscattered laser beams

[1 Energy/flux too low even with 100 pA 12 GeV electron beam and
not quite state of the art lasers

[] 100% linear polarization at endpoint
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Coherent Bremsstrahlung
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Backscattered Laser

Pros: Clean beam without the low-energy component and the beam is
linearly polarized (100% at the endpoint).

Cons: High electron flux is necessary (100 pA)
Energiestoo low - even with lasersavaiablein a few years
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For each subsystem ask

Detector 1Issues

e what is needed?
e availability?
e R&D?
cost?
e staging?
e who will design & build?
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beam - tagged coherent brem or Compton backscatter
target - LH2 and nuclear targets

magnets - LASS/MEGA (solenoid) - TPLB (dipole)

sheet of flame - flux exclusion? deaden chambers?
particle I. D. - RICH? DIRC? Threshold C? TOF?
calorimetry - Csl? PbO? target and forward regions
target tracking - straw tubes? vertexing? TPC?

forward tracking - straw tubes? drifts? PWCs?

trigger - rates? FADCs? pipelining? location?



Eightplus Stage-1 Detector
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Conclusions Ei

1. Data on photoproduction of mesons below charm
threshold is essentially non-existent.

2. These data are needed to answer many open
questions and are guaranteed to provide answers.

3. Photon beams of 10-12 GeV are needed to probe
the required mass range. Fluxes, duty factor and
resolution are no problem.

4. A world-class hermetic detector using state-of-
the-art technology can be built within 2 yrs of start.

5. Other physics can also be studied with this detec-
tor - e.g. some rare decays.

6. We have the core of a collaboration in place - in-
cluding experimentalists and theorists.

7. A staged approach - starting with 6-8 GeV photons
can start answering important technical and physics
guestions.

8. We plan to submit such a proposal to the PAC by
Jan 1999 - for an effort the DoE/NSF will be proud to
fund.
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