Status of GlueX Particle Identification

Ryan Mitchell

September 10, 2004

Outline

- Overview of Particle ID Components.
- Physics Examples.
- Look at each subdetector:
- Central Drift Chamber (CDC)
- Barrel Calorimeter (BCAL)
- Cerenkov (CKOV)
- Forward Time of Flight (TOF)
- Likelihoods for Particle Hypotheses.
- Angular Efficiencies.

Particle ID with the GlueX Detector:

1. $\mathrm{dE} / \mathrm{dx}$ from the CDC
2. Time from the BCAL
3. Photo-electrons from Cerenkov
4. Time from the TOF

Starting Momentum Spectra

```
Starting momenta
for four reactions:
1. \(\gamma \mathrm{p} \rightarrow \pi^{+} \pi \mathrm{p}\)
2. \(\gamma \mathrm{p} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \mathrm{p}\)
3. \(\gamma \mathrm{p} \rightarrow \mathrm{K}^{*} \mathrm{~K}^{*} \mathrm{p}\)
    \(\rightarrow \mathrm{K}^{+} \pi \cdot \mathrm{K}^{-} \pi^{+} \mathrm{p}\)
4. \(\gamma \mathrm{p} \rightarrow \mathrm{K}_{1} \mathrm{~K}^{-p}\)
    \(\rightarrow \mathrm{K}^{+} \rho \mathrm{K}^{-} \mathrm{p}\)
    \(\rightarrow \mathrm{K}^{+} \pi^{+} \pi \mathrm{K}^{-} \mathrm{p}\)
```


Black $=$ proton, Blue $=$ Kaons, Red $=$ Pions

PID Cases $\left(\gamma \mathbf{p} \rightarrow \mathbf{K}^{*} \mathbf{K}^{*} \mathbf{p}\right)$

Black $=$ proton, Blue $=$ Kaons, Red $=$ Pions

An Example From GEANT $(\gamma \mathbf{p} \rightarrow \mathbf{K} * \mathbf{K} * \mathbf{p})$

dE/dx from the CDC

Black $=$ Proton
Blue = Kaon
Red = Pion
Green $=$ Electron

Good K/p separation below $\sim 2 \mathrm{GeV} / \mathrm{c}$.

Measured dE/dx in the CDC

Measurements for $\gamma \mathrm{p} \rightarrow \mathrm{K}^{*} \mathrm{~K}^{*} \mathrm{p}$.

Calculating Likelihoods:

Given a track with momentum p hitting the CDC,
${ }^{C D C} L_{i}=1 / \sigma_{i}(2 \pi)^{1 / 2} \exp \left(-\left(x-x_{i}\right)^{2 / 2} \sigma_{i}\right)$
$\mathrm{i}=$ particle hypothesis
$\mathrm{x}_{\mathrm{i}}=$ predicted measurement
$\sigma_{\mathrm{i}}=$ predicted error (10%)
$\mathrm{x}=$ actual measurement

Black $=$ proton, Blue $=$ Kaons, Red $=$ Pions

Time of Flight from BCAL

Black $=$ Proton
Blue = Kaon
Red $=$ Pion
Green = Electron

With 200 ps resolution, resolve:
-- π / K up to $\sim 1 \mathrm{GeV} / \mathrm{c}$
-- K/p up to $\sim 2 \mathrm{GeV} / \mathrm{c}$

Measured Time from BCAL

Measurements for $\gamma \mathrm{p} \rightarrow \mathrm{K}^{*} \mathrm{~K}^{*} \mathrm{p}$.

Calculating Likelihoods:

Given a track with momentum p and pathlength L hitting the BCAL,
${ }^{\text {BCAL }} \mathrm{L}_{\mathrm{i}}=1 / \sigma_{\mathrm{i}}(2 \pi)^{1 / 2} \exp \left(-\left(\mathrm{t}-\mathrm{t}_{\mathrm{i}}\right)^{2} / 2 \sigma_{\mathrm{i}}\right)$
$\mathrm{i}=$ particle hypothesis
$\mathrm{t}_{\mathrm{i}}=$ predicted measurement
$\sigma_{i}=$ predicted error
(200ps time resolution,
1% momentum res.,
1% length res.)
$\mathrm{t}=$ actual measurement

Black $=$ proton, Blue $=$ Kaons, Red $=$ Pions

CKOV Photo-Electrons

Black $=$ Proton
Blue = Kaon
Red = Pion
Green $=$ Electron

The CDR design:
Index of Refraction $=1.0015$
Length $=1.0$ meters
Efficiency $=90 \mathrm{~cm}^{-1}$.

Measured CKOV N $\mathbf{P E}_{\text {PE }}$

Measurements for $\gamma \mathrm{p} \rightarrow \mathrm{K}^{*} \mathrm{~K}^{*} \mathrm{p}$.

Black $=$ proton, Blue $=$ Kaons, Red $=$ Pions

Calculating Likelihoods:

Given a particle of momentum p , calculate the expected number of photoelectrons under different particle hypotheses:

$$
\mu=\mathrm{N}_{0} \lambda \sin ^{2} \theta_{\mathrm{c}} .
$$

If cerenkov "fires":

$$
{ }^{\mathrm{CKOv}} \mathrm{~L}_{\mathrm{i}}=\left(1-\mathrm{e}^{-\mu}\right)+\mathrm{a}-\mathrm{a}\left(1-\mathrm{e}^{-\mu}\right)
$$

If cerenkov is quiet:

$$
\operatorname{cKOV}_{\mathrm{i}}=\mathrm{e}^{-\mu}(1-a)
$$

$$
\mathrm{N}_{0}=\text { cerenkov efficiency }
$$

$$
\lambda=\text { length of cerenkov }
$$

$$
\theta=\text { cone of radiation angle }
$$

$$
\mathrm{a}=\text { accidental rate }
$$

Time from the TOF Wall

Black $=$ Proton
Blue = Kaon
Red = Pion
Green $=$ Electron

With 100 ps resolution, resolve:
$--\pi / \mathrm{K}$ up to $\sim 2.5 \mathrm{GeV} / \mathrm{c}$
-- K/p up to $\sim 4.0 \mathrm{GeV} / \mathrm{c}$

Measured TOF from the TOF Wall

Measurements for $\gamma \mathrm{p} \rightarrow \mathrm{K}^{*} \mathrm{~K}^{*} \mathrm{p}$.

Calculating Likelihoods:

Given a track with momentum p and pathlength L hitting the TOF,
${ }^{\text {TOF }} L_{i}=1 / \sigma_{i}(2 \pi)^{1 / 2} \exp \left(-\left(t-t_{i}\right)^{2} / 2 \sigma_{i}\right)$
$\mathrm{i}=$ particle hypothesis
$\mathrm{t}_{\mathrm{i}}=$ predicted measurement
$\sigma_{i}=$ predicted error
(100ps time resolution,
1% momentum resolution,
1% length resolution)
$\mathrm{t}=$ actual measurement

Black $=$ proton, Blue $=$ Kaons, Red $=$ Pions

Likelihoods

- Combine the likelihoods from all the detectors into a single likelihood, e.g.,

$$
\mathrm{L}_{\mathrm{K}}=\mathrm{L}_{\mathrm{K}}{ }^{\mathrm{CDC}} \mathrm{~L}_{\mathrm{K}}{ }^{\mathrm{BCAL}} \mathrm{~L}_{\mathrm{K}}{ }^{\mathrm{CKOV}} \mathrm{~L}_{\mathrm{K}}{ }^{\mathrm{TOF}}
$$

- Make decisions based on likelihood ratios. For now, use:

$$
\begin{aligned}
& \pi / \mathrm{K} \text { separation }=2 \ln \left(\mathrm{~L}_{\pi} / \mathrm{L}_{\mathrm{K}}\right) \\
& \mathrm{K} / \pi \text { separation }=2 \ln \left(\mathrm{~L}_{\mathrm{K}} / \mathrm{L}_{\pi}\right) \\
& \mathrm{p} / \mathrm{K} \text { separation }=2 \ln \left(\mathrm{~L}_{\mathrm{p}} / \mathrm{L}_{\mathrm{K}}\right)
\end{aligned}
$$

π / K Separation

π / K separation
$=2 \ln \left(\mathrm{~L}_{\pi} / \mathrm{L}_{\mathrm{K}}\right)$
for $\gamma p \rightarrow K^{*} K^{*} p$
Look at the ratio for each detector individually.

Blue $=$ Kaons, Red $=$ Pions

$\pi /$ K Separation

Combine likelihoods into an overall likelihood.

Now look at the π / K separation.

Blue $=$ Kaons, Red $=$ Pions

K/p Separation

K / p separation
$=2 \ln \left(\mathrm{~L}_{\mathrm{K}} / \mathrm{L}_{\mathrm{p}}\right)$ for $\gamma \mathrm{p} \rightarrow \mathrm{K}^{*} \mathrm{~K}^{*} \mathrm{p}$

Look at the ratio for each detector individually.

Black $=$ proton, Blue $=$ Kaons

K/p Separation

Combine likelihoods into an overall likelihood.

Now look at the K/p separation.

Black $=$ proton, Blue $=$ Kaons

Particle ID Cuts

- To get an idea of efficiencies, make the following simplifications...
- A Pion is considered identified if:

$$
2 \ln \left(\mathrm{~L}_{\pi} / \mathrm{L}_{\mathrm{K}}\right)>2.0
$$

- A Kaon is considered identified if:

$$
2 \ln \left(\mathrm{~L}_{\mathrm{K}} / \mathrm{L}_{\pi}\right)>2.0
$$

- A Proton is considered identified if:

$$
2 \ln \left(\mathrm{~L}_{\mathrm{p}} / \mathrm{L}_{\mathrm{K}}\right)>2.0
$$

Momentum Efficiencies

For $\gamma \mathrm{p} \rightarrow \mathrm{K}^{*} \mathrm{~K}^{*} \mathrm{p}$, there is definite
structure in momentum efficiencies...

Inefficiencies due to...
-- high momentum central tracks.
-- forward tracks from
2 to $3 \mathrm{GeV} / \mathrm{c}$

Black $=$ proton, Blue $=$ Kaons, Red $=$ Pions

Angular Efficiencies for K***

Efficiencies in Gottfried-Jackson angles.

Preference for forward-
 backward decays.

Angular Efficiencies for $\mathbf{K}^{+} \mathbf{K}^{-}$

Angular Efficiencies for $\mathbf{K}_{1} \mathbf{K}$

Conclusions

- There are no overwhelming problems in GlueX particle ID.
- In the present setup, inefficiencies occur due to:
- High momentum central tracks
- Forward tracks between 2 and $3 \mathrm{GeV} / \mathrm{c}$
- These inefficiencies lead to sculpted momentum spectra, but only slight variations in angular efficiencies.

