Status of GlueX Particle Identification

Ryan Mitchell September 10, 2004

Outline

- Overview of Particle ID Components.
- Physics Examples.
- Look at each subdetector:
 - Central Drift Chamber (CDC)
 - Barrel Calorimeter (BCAL)
 - Cerenkov (CKOV)
 - Forward Time of Flight (TOF)
- Likelihoods for Particle Hypotheses.
- Angular Efficiencies.

Particle ID with the GlueX Detector:

- 1. dE/dx from the CDC
- 2. Time from the BCAL
- 3. Photo-electrons from Cerenkov
- 4. Time from the TOF

Starting Momentum Spectra

Starting momenta for four reactions:

1.
$$\gamma p \rightarrow \pi^+\pi^-p$$

2.
$$\gamma p \rightarrow K^+K^-p$$

3.
$$\gamma p \rightarrow K^*K^*p$$

 $\rightarrow K^+\pi^-K^-\pi^+p$

4.
$$\gamma p \rightarrow K_1 K^- p$$

 $\rightarrow K^+ \rho K^- p$
 $\rightarrow K^+ \pi^+ \pi^- K^- p$

Black = proton, **Blue** = **Kaons**, **Red** = **Pions**

PID Cases ($\gamma p \rightarrow K^*K^*p$)

- 0. No PID Info
- 1. CDC
- 2. CDC, BCAL
- 3. CKOV
- 4. CDC, CKOV
- 5. CDC,BCAL,CKOV
- 6. CKOV, TOF
- 7. CDC,CKOV,TOF
- 8. CDC,BCAL,CKOV,TOF

Black = proton, Blue = Kaons, Red = Pions

An Example From GEANT $(\gamma p \rightarrow K*K*p)$

dE/dx from the CDC

Black = Proton

Blue = Kaon

Red = **Pion**

Green = Electron

Good K/p separation below ~2 GeV/c.

Measured dE/dx in the CDC

Measurements for $\gamma p \rightarrow K^*K^*p$.

Calculating Likelihoods:

Given a track with momentum p hitting the CDC,

$$^{CDC}L_{i} = 1/\sigma_{i}(2\pi)^{1/2} \exp(-(x-x_{i})^{2}/2\sigma_{i})$$

i = particle hypothesis

 x_i = predicted measurement

 σ_i = predicted error (10%)

x = actual measurement

Black = **proton**, **Blue** = **Kaons**, **Red** = **Pions**

Time of Flight from BCAL

Black = Proton

Blue = Kaon

Red = Pion

Green = Electron

With 200 ps resolution, resolve:

- -- π/K up to $\sim 1 \text{ GeV/c}$
- -- K/p up to $\sim 2 \text{ GeV/c}$

Measured Time from BCAL

Measurements for $\gamma p \rightarrow K^*K^*p$.

Calculating Likelihoods:

Given a track with momentum p and pathlength L hitting the BCAL,

$$^{\text{BCAL}}L_{i} = 1/\sigma_{i}(2\pi)^{1/2} \exp(-(t-t_{i})^{2}/2\sigma_{i})$$

i = particle hypothesis $t_i = predicted measurement$ $\sigma_i = predicted error$

1% momentum res.,

(200ps time resolution,

1% length res.)

t = actual measurement

Black = **proton**, **Blue** = **Kaons**, **Red** = **Pions**

CKOV Photo-Electrons

Black = Proton

Blue = Kaon

Red = **Pion**

Green = Electron

The CDR design:

Index of Refraction = 1.0015 Length = 1.0 meters Efficiency = 90 cm⁻¹.

Measured CKOV N_{PE}

Measurements for $\gamma p \rightarrow K^*K^*p$.

Black = **proton**, **Blue** = **Kaons**, **Red** = **Pions**

Calculating Likelihoods:

Given a particle of momentum p, calculate the expected number of photoelectrons under different particle hypotheses:

$$\mu = N_0 \lambda \sin^2 \theta_c.$$

If cerenkov "fires":

$$^{CKOV}L_i = (1-e^{-\mu}) + a - a(1-e^{-\mu})$$

If cerenkov is quiet:

$$^{CKOV}L_i = e^{-\mu}(1-a)$$

 $N_0 = cerenkov efficiency$

 λ = length of cerenkov

 θ = cone of radiation angle

a = accidental rate

Time from the TOF Wall

Black = Proton

Blue = Kaon

Red = Pion

Green = Electron

With 100 ps resolution, resolve:

-- π/K up to ~ 2.5 GeV/c

-- K/p up to $\sim 4.0 \text{ GeV/c}$

Measured TOF from the TOF Wall

Measurements for $\gamma p \rightarrow K^*K^*p$.

Calculating Likelihoods:

Given a track with momentum p and pathlength L hitting the TOF,

$$^{TOF}L_{i} = 1/\sigma_{i}(2\pi)^{1/2} exp(-(t-t_{i})^{2}/2\sigma_{i})$$

 $i = particle \ hypothesis$ $t_i = predicted \ measurement$ $\sigma_i = predicted \ error$ (100ps time resolution,
1% momentum resolution,
1% length resolution) $t = actual \ measurement$

Black = **proton**, **Blue** = **Kaons**, **Red** = **Pions**

Likelihoods

• Combine the likelihoods from all the detectors into a single likelihood, e.g.,

$$L_{K} = L_{K}^{CDC} L_{K}^{BCAL} L_{K}^{CKOV} L_{K}^{TOF}$$

Make decisions based on likelihood ratios.
 For now, use:

 π/K separation = $2\ln(L_{\pi}/L_{K})$

 K/π separation = $2ln(L_K/L_\pi)$

p/K separation = $2ln(L_p/L_K)$

π/K Separation

 π/K separation = $2\ln(L_{\pi}/L_{K})$ for $\gamma p \rightarrow K^{*}K^{*}p$

Look at the ratio for each detector individually.

Blue = Kaons, Red = Pions

π/K Separation

Combine likelihoods into an overall likelihood.

Now look at the π/K separation.

Blue = Kaons, Red = Pions

K/p Separation

K/p separation = $2\ln(L_K/L_p)$ for $\gamma p \rightarrow K^*K^*p$

Look at the ratio for each detector individually.

Black = **proton**, **Blue** = **Kaons**

K/p Separation

Combine likelihoods into an overall likelihood.

Now look at the K/p separation.

Black = **proton**, **Blue** = **Kaons**

Particle ID Cuts

- To get an idea of efficiencies, make the following simplifications...
- A Pion is considered identified if:

$$2\ln(L_{\pi}/L_{K}) > 2.0$$

• A Kaon is considered identified if:

$$2\ln(L_{\rm K}/L_{\pi}) > 2.0$$

• A Proton is considered identified if:

$$2\ln(L_{p}/L_{K}) > 2.0$$

Momentum Efficiencies

For $\gamma p \rightarrow K^*K^*p$, there is definite structure in momentum efficiencies...

Inefficiencies due to...

- -- high momentum central tracks.
- -- forward tracks from 2 to 3 GeV/c

Black = proton, Blue = Kaons, Red = Pions

Angular Efficiencies for K*K*

Angular Efficiencies for K+K-

Angular Efficiencies for K₁K

Conclusions

- There are no overwhelming problems in GlueX particle ID.
- In the present setup, inefficiencies occur due to:
 - High momentum central tracks
 - Forward tracks between 2 and 3 GeV/c
- These inefficiencies lead to sculpted momentum spectra, but only slight variations in angular efficiencies.