A DIRC for Gluex?

Stefan M. Spanier University of Tennessee, Knoxville

- The BaBar DIRC
- Adaptation to Gluex

The University of Tennessee
Department of
Physics & Astronomy

Why PID in the BaBar Experiment?

BaBar measures B-meson decays in the reaction:

e.g. separate channels B/B $\rightarrow \pi^+\pi^-$, π^{\pm} K

$${\overset{\tau}{O}} \approx 10^{-5}$$
 , momentum < 4.3 GeV/c

π/K Separationin Cherenkov anglein quartz

$$\Delta\theta_{\rm C}$$
 = 6.5mrad at 4 GeV/c

 \Rightarrow 3 σ need 2.2 mrad resolution

$$\sigma(\theta_{\rm C}) = \sqrt{\sigma(\theta_{\rm track})^2 + \sigma(\theta_{\rm C,\gamma})^2/N_{\gamma}}$$

BaBar

BaBar detector

Requirements for the DIRC

- continue π/K separation of SVT/DCH (p>700 MeV/c),
- small radial dimensions because of momentum cutoff of B-field (1.5 T), cost of calorimeter, distortion of photon detection down to 20 MeV.
- radiation robustness: expect 10 krad within 10 years,
- insensitive to background from accelerator/physics,
- fast device on BaBar scale (event duration $<1~\mu s$),
- easy access to components.

The Babar - DIRC Collaboration

D ETECTION OF

I NTERNALLY

R EFLECTED

C HERENKOV LIGHT

Novel Ring Imaging
Cherenkov detector based on total internal reflection of
Cherenkov light.

It is used for the first time in BABAR.

The BABAR-DIRC Collaboration

R. Aleksan,^b D. Aston,^a D. Bernard,^e G. Bonneaud,^e F. Brochard,^e D.N. Brown,^f J. Chauveau,^c M. Convery,^a S. Emery,^b A. Gaidot,^b Ph. Grenier,^e T. Hadig,^a G. Hamel de Monchenault,^b B. Hartfiel,ⁱ A. Höcker,^d M. John,^c R.W. Kadel,^f M. Krishnamurthy,^j M. Legendre,^b J. Libby,^a G.W. London,^b A.-M. Lutz,^d J. Malcles,^c G. Mancinelli,^h B. Mayer,^b B.T. Meadows,^h Ll.M. Mir,^f D. Muller,^a J. Ocariz,^c T. Petersen,^d M. Pivk,^c S. Plaszczynski,^d M. Pripstein,^f B.N. Ratcliff,^a L. Roos,^c S. Schrenk,^e M.-H. Schune,^d J. Schwiening,^a V. Shelkov,^f M.D. Sokoloff,^h S. Spanier,^j J. Stark,^c A.V. Telnov,^f G. Therin,^c Ch. Thiebaux,^e G. Vasileiadis,^e G. Vasseur,^b J. Va'vra,^a M. Verderi,^e R.J. Wilson,^g G. Wormser,^d A. Yarritu,^a Ch. Yéche,^b Q. Zeng,^g M. Zito^b

- ^a Stanford Linear Accelerator Center
- ^b CEA-Saclay,
- LPNHE des Universités Paris 6 et Paris 7
- d LAL, Universite Paris Sud
- ^e Ecole Polytechnique, LPNHE
- f Lawrence Berkeley National Laboratory
- g Colorado State University
- ^h University of Cincinnati
- i UCLA
- j University of Tennessee

The Cherenkov Detector

$$\cos \theta_{\mathcal{C}}(\lambda) = \frac{1}{\beta \, \mathsf{n}(\lambda)}$$

RICH detector

Resolution:

- geometrical (d) /imaging
- color smearing

Total internal reflection (DIRC)

$$\theta_a$$
>90°

$$n \sin \theta_C = n_a$$
 [Snell]

for $\beta \approx 1$ from Cherenkov cone:

$$n = \sqrt{n_a^2 + 1}$$

$$n_a = 1 \Rightarrow n = \sqrt{2} \equiv quartz$$

The Cherenkov Detector

 \Rightarrow identify particle by measuring $\theta_{\mathcal{C}}$, if its momentum p is known :

0.9 Cherenkov angle [rad] 8.0 0.7 Electron 0.6 — Muon 0.5 — Pion 0.4 — Kaon 0.3 — Proton 0.2 in quartz 0.1 0 0.5 1.5 2 track momentum [GeV/c]

$$\beta$$
 = p/E , E = $\sqrt{p^2 + m^2}$ m = mass of particle

identify particle also by measuring the number of photons

 $N \propto L \sin^2 \theta_C$

L = pathlength in medium

The Principle

The Principle

3D - device

The Bar Quality

synthetic fused silica (amorphous silicon dioxide), cutting, grinding and polishing in several steps. Efficiency loss per component less than 20%.

Typical photon: λ = 400 nm, path length in quartz = 6 - 20 m, bounces on surface: = ~ 200 - 300

- bulk absorption (Raleigh scattering; attenuation length $\propto \lambda^4$) light transmission @ 442 nm : (99.9 ± 0.1)%/m
- surface scattering (attenuation length ∞ roughness r⁻²) reflection : (99.96 + 0.01)%/bounce
- Mirror reflection: ~ 92%
- Radiation hardness rated lifetime dose > 100krad (10 krad in 10 years)

The Bar Quality

• Non-squareness on bar crosssection:

4 angle defining the bar cross section;

 $\sigma \sim 0.2 \text{ mrad}$

• Bar-edge precision:

The Bar Quality

Super-polished surfaces:

Polished to roughness < 5Å

Internal reflection: $(99.96 \pm 0.01)\%$ / bounce

Class 10 clean room at SLAC

Gluing of bars with capillary method.

Mirrors

The Bar Box

- 12 DIRC sectors

- each has one aluminum box with 12 quartz bars

- kept in nitrogen atmosphere

- <u>Coverage</u>:

87% C.M. polar angle,94% azimuthal angle19% radiation length incl. supports

Cross section

The Bar Box

Installation of the last bar box

The Photon Detector

.. photons exit from wedge into expansion region filled with 6000 l pure, de-ionized water ($n \approx 1.346$).

10,752 conventional photo tubes

- immersed directly in water,
- hexagonal light catchers
- time resolution : 1.5 ns rms
- max quantum efficiency@410 nm

Calibration diode window

Bar box (wedge)

The Photon Detector

Magnetic shielding: passive and active B_T at the PMT < 0.2 Gauss

The Photon Detector

Readout structure

- each 64 PMT are read into
 - 4 TDC (0.525 ns binning) + 1 ADC
- 1.2 Gbits optical fibers to ROM

HV cabling

- 900-1400 V per tube
- correlation HV%time
 - -> calibration

L1 trigger rate \approx 2 kHz \Rightarrow time T

- derived from fast pattern recognition in DCH ($\sigma(T) \approx 60$ ns)
- latency = 12 μ s (-> buffering in FE-electronics)
 - o.k. with DIRC event duration \leq 100 ns

interval: the hit rate/PMT is

kept below 200 kHz.

raw PMT time $t = t_{hit}$ -T; use interval of ± 300 ns

cosmic event

Correction of the measured time $t \rightarrow t'$ for

- bunch crossing (from track reconstruction),
- electronic delays and
- calibration(PMT time, FEE delays with LED source)

Expected arrival time te of Cherenkov photons

- track time-of-flight
- photon propagation in quartz and water.
 It depends on photon angle in the bar:
 3D device!

- (a) correct for attenuation along photon path:
 - $\theta_c = \theta_c(\lambda)$ -> shift of the mean (~0.5 mrad)
 - t = $t(\alpha_x, \alpha_y)$ -> shift negligible for time (~20 ps)
- (b) in future faster timing ($\sigma \ll 1$ ns):
 - measure $\theta_{\mathcal{C}}$ via $t(\alpha_{\mathsf{x}},\alpha_{\mathsf{y}})$
 - distinguish colours: $v = v(\lambda) \Rightarrow t(\lambda) = 1/v(\lambda)$

Cut on the difference Δt between measured t' and expected arrival time t_e : $x = 10^3$

$$\sigma(\Delta t) = 1.5$$
ns

compare to ~1.5 ns intrinsic time resolution of PMTs

 \pm 8 ns Δ t window (1 background hit/sector/event)

In a typical multi-hadron event 11 randomly distributed photons and ~240 signal photons

Cherenkov 'ring' image is complex, because of

- -limited acceptance for total internal reflection in quartz bar
- -reflection ambiguities

(up/down,left/right,forward/backward, wedge)

- \Rightarrow 16 ambiguities per hit;
 - average 2.5 (pattern recognition), max 4
- toroidal detection surface

Multi-Hadron Event

Reconstruction

Most of the ambiguities are solved by the correlation between α_x, α_y and t (physical solutions) using a lookup table or ray-tracing.

Ambiguity map:

Particle identification uses the Combination of photon solutions probing the hypotheses e,μ,π,K,p

Single Photon Resolution

 $\Delta\theta_c$: difference between measured $\theta_{c,\gamma}$ per photon solution and θ_c of fit:

Background contributions:

- combinatorics, overlap between tracks,
- knock-on electrons in quartz
- reflections down the bar/mirror
- beam background (small effect)

$$\sigma_{\theta}^{2}_{tot} = \sigma_{\theta}^{2}_{chromatic} + \sigma_{\theta}^{2}_{transport} + \sigma_{\theta}^{2}_{imaging} + \sigma_{\theta}^{2}_{detection} + \sigma_{\theta}^{2}_{chromatic} : n = n(\lambda) : 5.4 \text{ mrad}$$

$$\sigma_{\theta}^{2}_{imaging+detection} : \sim 7.3 \text{ mrad bar size and imaging granularity}$$

$$\sigma_{\theta}^{2}_{transport} : \text{smearing down the bar (sides/faces; } \leq 1 \text{ mrad })$$

Resolution

Number of
Cherenkov photons
per track versus
polar angle for
di-muon events.
Observe between
20 and 60 photons

Photon efficiency: - geometry / sensitive area

- mirror reflection ~ 92 %

- transmission/internal reflection ~ 80 %

- water transmission ~ 98 %

- photo tube efficiency $\leq 25 \%$

- glue joint cutoff @ 280nm
- transition quartz/water
- photo tube window in water

Resolution

Correlation between momentum and polar angle for B-> π π and B-> π X.

Resolution of Cherenkov angle per track:

$$\sigma_{\theta} = \sqrt{\sigma_{\text{track}}^2 + \sigma_{\theta \gamma}^2 / N_{\gamma}}$$

 $\sigma(\Delta\theta_{c,}) = 2.4 \text{ mrad}$

Track Cherenkov angle resolution is within ~10% of design.

Particle Identification

- For selection combine the Gaussian $G(\theta, \theta_c)$ with Poissonian $P(N_{\gamma}, N_{\text{expected}} + N_{\text{bck}})$ for photon counting.
- For selection tuning select the decay

$$D^{*-} \rightarrow D^0 \pi^ \downarrow K^- \pi^+$$

identify the π and K from the D⁰ kinematically. Correct for combinatorial background (~10%).

e.g. selection of $D^0 \to K^-\pi^+$

average K selection efficiency: 88% average p mis-id: 2% average rejection factor: 44

• Currently the rate is kept below 200kHz = 1300 hits in ± 300 ns = 12% occupancy

Generate headroom for accelerator:

- introduce local shielding
- speed up readout electronics

Operation

- 99.7% of all tubes are fully operational
- failures so far due to
 - vacuum breakdown
 - light emitting tubes
- glass degradation

PMT front glass corrosion due to sodium depletion in ultra-pure water.

In \approx 50 tubes of one incorrectly manufactured batch (zinc-less glass) frosty. Same effect in all tubes (milkiness), which is not a long term problem.

- lifetime of phototubes

≈8 Cb/year ≈2% loss in efficiency compatible with observation (gain loss, worse transmission?)

Gluex Adaptation

Physics particle momenta and angle of incidence

and their resolutions

occupancy / correlations

· Background from beam

occupancy

photon / electron rates

· Geometry spacing

magnetic field conditions

· Construction

Ryan Mitchel simulated a variety of final states and inspect at plane behind hole of magnet z = 450 cm; the straight forward segmentation is in y-direction.

Thanks to Richard and Ryan.

: 1 ... 4.5 GeV/c Momentum

resolution @ 4.5 GeV/c:

Polar angle : < 15°

resolution @ 4.5 GV/c: < 2 mr

• Correlations: particles with polar angle $> 15^{\circ}$ are pions with momenta < 1 GeV/c 33

preliminary

Consists primarily of electrons/positrons and conversions from photons in the Cherenkov detector

e+, e- rate versus distance in y-direction

- Rate < 100 kHz / cm above/below 6cm and 200 kHz/2cm bar inner most,
- total rate $|y| > 6cm : \sim 900 \text{ kHz}$ $|y| > 10 \text{ cm} : \sim 580 \text{ kHz}$

preliminary

γ rate versus distance in y-direction

- Rate ~ 600 kHz / cm above/below 6cm
- total rate |y| > 6cm : 29.6 MHz
 |y| > 10cm : 24.0 MHz

Photon rate out of bars into photon detector

- Cherenkov light from e+,e- = 30 photons/lepton
- Cherenkov light from photons = $0.15/\text{photon} \times 2e \times 20 \text{ photons/e}$

→ |y| > 6cm : 27 MHz + 180 MHz ~ 210 MHz

|y| > 10cm : 17 MHz + 144 MHz ~ 160 MHz

The event time (trigger window) is less than 100 ns

→ We expect 21/16 background photons from beam

The window for reconstructed photons is less than 10 ns

→ We expect 2 background photons

But: the single tube occupancy depends on optics and cutoff (??); for 1000 phototubes randomly hit: rate ~ 210 kHz / tube

Gluex Adaptation

preliminary

Gluex Adaptation

Magnetic Field

Thanks to Paul Brindza

Construction

The Gluex RICH Cherenkov is about $\frac{1}{4}$ of the BaBar DIRC size.

Tasks: The detector naturally splits into radiator and photon detector

- the radiators should be assembled close to the final destination (clean-room at JLAB?)
- the photon detector can be assembled at UT jointly by UT/ORNL

- ...

Time: One wants to reserve 2 - 3 years

A lot of experience can be transferred from BaBar DIRC and if early enough even assistance.

People: ~ 12 physicists and engineers

- 2 JLAB staff
- 1 (2) physicist (ORNL)
- 2 physicists (UT)
- 2 mechanical engineers
- 1 electrical engineer (UT)

- ...

Outlook

- No Conceptional Design yet
- Looks feasible
- Cost estimate has to be based on former