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A DIRC for Gluex ?
Stefan M. Spanier

University of Tennessee, Knoxville

• The BaBar DIRC

• Adaptation to Gluex
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Why PID in the BaBar Experiment ?

BaBar measures B-meson decays in the reaction: 

e+e- Y(4s)       { B B }           K   p
µ

π

e
- mass(B) ≈ 5.279 GeV/c2, 

lifetime ≈ 1.5 ps
>96%

E = 10.580 GeV

e.g. separate channels  B/B → π+π-, π± K O ≈ 10-5 , momentum < 4.3 GeV/c

±_

6.5mrad@4GeV/c

Momentum [GeV/c]

∆θ
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π/K Separation
in Cherenkov angle 
in quartz  
∆θC = 6.5mrad 

at 4 GeV/c
⇒ 3σ need 2.2 mrad

resolution

σ(θC) = √ σ(θtrack)2 + σ(θC,γ)2/Nγ
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- continue π/K separation of SVT/DCH ( p>700 MeV/c ),

- small radial dimensions because of 
momentum cutoff of B-field (1.5 T),
cost of calorimeter,

distortion of photon detection down to 20 MeV.

- radiation robustness: expect 10 krad within 10 years,
- insensitive to background from accelerator/physics,

- fast device on BaBar scale ( event duration <1 µs ),
- easy access to components.

Requirements for the DIRCRequirements for the DIRC
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The Babar - DIRC Collaboration
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Novel Ring Imaging 
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total internal reflection of 
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It is used for the first time in 
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The Cherenkov Detector

}d

particle

imaging device/photon detector

RICH detector

Resolution:
- geometrical (d) /imaging
- color smearing 

Total internal reflection ( DIRC )

}d

particle

n

na θC

θaθa>90o  

n sinθC = na [Snell]

for β ≈1 from Cherenkov cone:

n = √ na
2 + 1

na = 1 ⇒ n = √2   ≡ quartz
_

cosθC (λ) = 1
β n(λ)
_____
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The Cherenkov Detector

⇒ identify particle by measuring θC , 
if its momentum p is known :

Ch
er
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track momentum [GeV/c]

β = p/E , E =√ p2 + m2

in quartz

m = mass of particle

identify particle also by 
measuring the number of photons

for certain d
N
um

be
r 

of
 p

ho
to

ns
  

  

track momentum [GeV/c]

N ∝ L sin2θC
L = pathlength in medium
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The Principle

water  n3

air  n2

water

4.9 m 1.17 m

35 mm x 17 mm

Pinhole focusPinhole focus
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3D - device3D - device

αy

αx

tim
e

z

y

θdip

θC

φC

The Principle

PMT
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The Bar Quality
synthetic fused silica (amorphous silicon dioxide),
cutting, grinding and polishing in several steps.
Efficiency loss per component less than 20%. 

Typical photon: λ = 400 nm, 
path length in quartz = 6 – 20 m, 
bounces on surface: = ~ 200 – 300

• bulk absorption (Raleigh scattering; attenuation length ∝ λ4 )
light transmission @ 442 nm : (99.9 ± 0.1)%/m

• surface scattering (attenuation length ∝ roughness r-2 )
reflection : (99.96 + 0.01 )%/bounce

• Mirror 
reflection :  ~ 92%

• Radiation hardness
rated lifetime dose > 100krad   (10 krad in 10 years)
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The Bar Quality

• Bar-edge precision:

10 µm
200 µm

• Non-squareness on bar crosssection:

scan with CCD camera

4 angle defining the bar
cross section;

σ ~ 0.2 mrad

#570 bars

-1                          0                          1
Non-squareness [mrad]
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The Bar Quality

• Super-polished surfaces:

Measure attenuation
with laser and compare
to scattering theory.

Internal reflection:
(99.96 ± 0.01)%  / bounce

Polished to roughness < 5Å
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Gluing of bars 
with capillary 
method.

Class 10 clean room at SLAC

The Bar Assembly
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- 12 DIRC sectors
- each has one aluminum box with 12 quartz bars
- kept in nitrogen atmosphere 
- Coverage: 

87% C.M. polar angle, 
94% azimuthal angle
19% radiation length 

incl. supports

Cross section

The Bar Box

150 µm bar spacing
with Aluminum shims

14
.2

 c
m

4.
8 

cm
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Installation of the last bar box

The Bar Box
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The Photon Detector

characteristics

10,752  conventional photo tubes  
- immersed directly in water, 
- hexagonal light catchers
- time resolution   :  1.5 ns rms
- max quantum efficiency@410 nm

.. photons exit from wedge into 
expansion region filled with 
6000 l pure, de-ionized 
water (n ≈ 1.346).

Calibration diode
window

Bar box (wedge)
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The Photon Detector

Magnetic shielding: passive and active
BT at the PMT < 0.2 Gauss



18

Stefan Spanier 9/10/2004

- each 64 PMT are read into 
4 TDC (0.525 ns binning) + 1 ADC 

- 1.2 Gbits optical fibers to ROM                  

Readout structure HV cabling

- 900-1400 V  per tube 
- correlation HV%time

-> calibration  

Cherenkov 
ring

The Photon Detector
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Timing
L1 trigger rate ≈ 2 kHz    ⇒ time T

- derived from fast pattern recognition in DCH ( σ(T) ≈ 60 ns )

- latency = 12 µs (-> buffering in FE-electronics)

o.k. with DIRC event duration ≤ 100 ns

raw PMT time t = thit-T; 
use interval of ±300 ns

raw time [ns]

rφ projection of the PMT
array showing the phototubes 
hit within the ±300 ns raw time
interval; the hit rate/PMT is 
kept below 200 kHz.
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Correction of the measured time t→t’ for 
- bunch crossing (from track reconstruction), 
- electronic delays and 
- calibration
(PMT time, FEE delays with LED source)

Expected arrival time te of Cherenkov photons

- track time-of-flight
- photon propagation in quartz and water. 
It depends on photon angle in the bar: 
3D - device !

cosmic event

µ+

Timing
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Photon path:   l = z
cos (αx,αy) 
_______ coordinate along bar

photon direction in bar
______________=

⇒ propagation time tb = l/v = t(αx,αy) ~ t(θC,φC )

(a) correct for attenuation along photon path:
- θC = θC (λ)   -> shift of the mean ( ~0.5 mrad )
- t = t(αx,αy) -> shift negligible for time ( ~20 ps )

(b) in future faster timing (σ << 1ns):
- measure θC via t(αx,αy)
- distinguish colours:  v = v(λ)  ⇒ t(λ) = l/v(λ) 

αy

αx

tb tw

z

Timing
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σ(∆t) = 1.5ns
compare to ~1.5 ns
intrinsic time resolution 
of PMTs

Cut on the difference ∆t between measured t’ and 
expected arrival time te:

± 8 ns  ∆t window
(1 background hit/sector/event)

In a typical multi-hadron
event 11 randomly 
distributed photons and 
~240 signal photons 

Cherenkov ‘ring’ image is complex, because of
-limited acceptance for total internal reflection 
in quartz bar

-reflection ambiguities 
(up/down,left/right,forward/backward, wedge) 
⇒ 16 ambiguities per hit; 

average 2.5 (pattern recognition), max 4
- toroidal detection surface

Timing
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Multi-Hadron Event
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Most of the ambiguities are
solved by the correlation between
αx,αy and t (physical solutions)
using a lookup table
or ray-tracing.

Ambiguity map:

Example: Comparison 
of a real event to simulated 
response of the DIRC for different particle types. 

Particle identification uses the 
Combination of photon solutions 

probing the hypotheses e,µ,π,K,p

Reconstruction
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∆θc: difference between measured θc,γ per photon solution and θc of fit:

σθ
2

tot  =  σθ
2

chromatic  + σθ
2

transport  

+ σθ
2

imaging  + σθ
2

detection 

σθ
2

chromatic                  :  n = n(λ ) : 5.4 mrad

σθ
2

imaging+detection    :  ~ 7.3 mrad bar size and imaging granularity

σθ
2

transport                    : smearing down the bar  (sides/faces; ≤ 1 mrad )

e+e-→ µ+µ-

∆θc [mrad]

Single Photon Resolution

σ(∆θc)  =  10 mrad Background contributions:
- combinatorics,  overlap between tracks, 
- knock-on electrons in quartz
- reflections down the bar/mirror
- beam background (small effect)
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Number of 
Cherenkov photons 
per track versus
polar angle for 
di-muon events. 
Observe between 
20 and 60 photons

cos(θtrack)

Resolution

Photon efficiency:  - geometry / sensitive area 
- mirror reflection                              ~ 92 %
- transmission/ internal reflection      ~ 80 %
- water transmission                           ~ 98 %
- photo tube efficiency                       ≤ 25 %
- glue joint cutoff @ 280nm
- transition quartz/water
- photo tube window in water
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Resolution

σθ = √ σtrack
2 + σθγ

2 /Nγ

B0 → π± X

B0
→

π+ π-

cos(θtrack)

Monte Carlo

m
om

en
tu

m
 [
Ge

V/
c]

Resolution of Cherenkov angle per track:

σ(∆θc,) = 2.4 mrad

Track Cherenkov angle resolution 
is within ~10% of design.

Correlation between 
momentum and polar 
angle for B->π π and
B->π X.
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Particle Identification
For selection combine the Gaussian G(θ,θC)  with 
Poissonian P(Nγ, Nexpected + Nbck) for photon counting.

D∗– → D0 π –

K– π +

For selection tuning select the decay

identify the π and K from 
the D0 kinematically.
Correct for combinatorial
background (~10%).

π K

average K selection efficiency:   88%
average p mis-id:                          2%
average rejection factor:            44

e.g. selection of D0 → K – π+
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Beam Background

Generate headroom for accelerator:
- introduce local shielding
- speed up readout electronics

Occupancy map for a run

• Currently the rate is kept below 200kHz ≡ 1300 hits in ±300ns ≡ 12% occupancy

Readout inefficiency 
for coherent/random hits
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Operation
- 99.7% of all tubes are fully operational

- failures so far due to
- vacuum breakdown 
- light emitting tubes 

- glass degradation

PMT front glass corrosion 
due to sodium depletion 
in ultra-pure water. 
In ≈ 50 tubes of one incorrectly 
manufactured batch (zinc-less glass) 
frosty. Same effect in all tubes 
(milkiness), which is not a long term problem. 

- lifetime of phototubes

≈8 Cb/year ≈2% loss in efficiency
compatible with observation
(gain loss, worse transmission ?)
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Gluex Adaptation

• Physics         particle momenta and angle of incidence
and their resolutions
occupancy / correlations

• Background  from beam
occupancy
photon / electron rates

• Geometry     spacing
magnetic field conditions

• Construction
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Gluex Physics
Ryan Mitchel simulated a variety of final states and inspect at plane 
behind hole of magnet z = 450 cm ; the straight forward segmentation 
is in y-direction.                                       Thanks to Richard and Ryan.

γ p π+ π− p

K+ K− p

K* K* p 
K+π− K−π+ π−

K1(1270)K− p
K*π+ K− p

pion
kaon
proton

preliminary
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Gluex Physics

Momentum : 1 ... 4.5 GeV/c
resolution @ 4.5 GeV/c: 

Polar angle :  < 15o

resolution @ 4.5 GV/c:  < 2 mr

• Correlations: particles with polar angle > 15o are pions with momenta < 1 GeV/c

preliminary
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Beam Background
Consists primarily of electrons/positrons and conversions from photons
in the Cherenkov detector

preliminary

e+, e- rate versus distance in y-direction

• Rate < 100 kHz / cm above/below 6cm and 200 kHz/2cm bar inner most,
• total rate  |y| >   6cm :  ~ 900 kHz    

|y| > 10 cm:  ~ 580 kHz

100 kHz

10 kHz
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Beam Background preliminary

γ rate versus distance in y-direction

• Rate ~ 600 kHz / cm above/below 6cm
• total rate |y| >  6cm : 29.6 MHz 

|y| > 10cm : 24.0 MHz 
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Beam Background preliminary

Photon rate out of bars into photon detector
• Cherenkov light from e+,e- =  30 photons/lepton
• Cherenkov light from photons = 0.15/photon x 2e x 20 photons/e

|y| >  6cm : 27 MHz + 180 MHz ~ 210 MHz 
|y|> 10cm : 17 MHz + 144 MHz ~ 160 MHz

The event time (trigger window) is less than 100 ns
We expect  21/16 background photons from beam 

The window for reconstructed photons is less than 10 ns
We expect 2 background photons 

But: the single tube occupancy depends on optics and cutoff (??);
for 1000 phototubes randomly hit:  rate ~ 210 kHz / tube
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Gluex Adaptation preliminary

Thanks to Ravi, JLAB

1400mm to PMT front
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Gluex Adaptation preliminary

#2340 PMTs

Thanks to Paul Mueller
and Charles Reed, ORNL

x3
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Gluex Adaptation

Ravi

preliminary
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Magnetic Field
Thanks to Paul Brindza

preliminary

z component         ~ 10 Gauss

Nodal mesh integral coil method

z –component    [B] = Gauss   

radial component ~ 45 Gauss
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Construction
The Gluex RICH Cherenkov is about ¼ of the BaBar DIRC size.

Tasks: The detector naturally splits into radiator and photon detector
- the radiators should be assembled close to the final destination

(clean-room at JLAB ?)
- the photon detector can be assembled at UT jointly by UT/ORNL
- …

Time  : One wants to reserve 2 – 3 years
A lot of experience can be transferred from BaBar DIRC
and if early enough even assistance. 

People:  ~ 12 physicists and engineers
- 2  JLAB staff
- 1 (2)  physicist (ORNL)
- 2  physicists (UT)
- 2  mechanical engineers                   
- 1  electrical engineer  (UT)
- …

preliminary
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Outlook

- No Conceptional Design yet

- Looks feasible

- Cost estimate has to be based on former


