Hall D Trigger

Dave Doughty
9/10/04
Hall D Collaboration Meeting

Outline

- The Challenge
- Level 1
- Level 3

Hall D - The Numbers

According to Design Report (Table 4.7 - 9 Gev)

 Tagged Photon Rate 300 I 	MHz
---	-----

- Total Hadronic Rate 365 KHz
- Tagged Hadronic Rate
 14 KHz

Conclusions:

- Trigger needs better than 25-1 rejection
- "Tag event" is nearly useless in trigger

Hall D – The Triggering Challenge

Factor of 25 is tough

- Requires essentially "full reconstruction" to separate on photon energy!!
- Hard to design hardware "up-front" to do this
- Hard to do it in 1 pass
- Hard to do it fast

Conclusion

• Do it in 2 stages - 1 hardware 1 software

Photon Rates

Start @ 10^7 y/s Open and unbiased trigger
Design for 10^8 y/s 15 KHz events to tape

Level 1 trigger system
With pipeline electronics

Software-based Level 3 System

L1 Trigger – Why is it Hard?

- Lots of low energy photons with high cross sections
- At high tag rates, tagger doesn't help
- Many final states are interesting
 - Some are mostly charged particles
 - Some are mostly neutral particles

$$-$$
 γ p -> X(1600) n -> ρ^0 π⁺ n-> n π⁺ π⁻ π⁺

- γ p -> X(1600) n -> Eta⁰
$$\pi$$
⁺ n -> n π ⁺ γ γ

- γ p -> X(1600)
$$\Delta^0$$
 -> π^+ $\pi^ \pi^+$ n π^0 -> π^+ $\pi^ \pi^+$ n γ γ

$$- \gamma p -> \rho^0 p -> \pi + \pi^- p$$

L1 Trigger – What would you like?

- Cut events with $E_{\gamma} < 2-5$ GeV
 - Some function of available params (energies, tracks)
 - Minimum/Maximum/Exact number of tracks in:
 - Start Counter
 - Forward TOF
 - Minimum or Maximum for energy in:
 - Barrel Calorimeter
 - Forward Calorimeter
 - Complex function which incorporates all of these
- Time window for matches
- Output delay from trigger/timestamp match

Level 1 Trigger and DAQ

- Front ends fully pipelined
- Trigger "spies" on data and is also pipelined
- Trigger causes "event extraction" from pipeline

L1 Trigger – Current plans

- Four separate subsystems
 - Start Counter compute number of tracks
 - Forward TOF compute number of tracks
 - Barrel Calorimeter compute energy
 - Forward Calorimeter compute energy
- Each subsystem computes continuously
 - Goal At speed of the FADC pipelines 250 MHz (hard)
- Global Trigger Processor "combines" all four subsystems
 - 4 level hierarchy: Board -> Crate -> Subsystem -> Global

Timing

Flight/Detector Time	32 ns			
PMT latency	32 ns			
Cables to FEE	32 ns			
 FEE to trigger out 	64 ns			
Crate sum	64 ns			
 Link to subsystem 	128 ns			
 Subsystem trigger processing 	256 ns			
 Transfer SER to GTP (64 bits) 	256 ns			
- GTP	512 ns			
 Level 1 output to FEE 	128 ns			
TOTAL = 1.504 μ S - design FEE for 3 μ s (~768 stage)!				
Christopher Newport University				

James Hubbard's "Proof of Concept"

- Genr8 create events
- HDGeant simulate events
- hddm-xml convert output to XML
- JAXB create Java objects for XML description
- JAS for analysis
- Function Optimization for GLUEX

Christopher Newport University

Particle Kinematics

Reactions

- 12 datasets (~120,000 events)
 - 4 Reactions simulated at 9 GeV
 - $\gamma p -> X(1600) n -> \rho^0 \pi^+ n -> n \pi^+ \pi^- \pi^+$
 - $\gamma p -> X(1600) n -> Eta^0 \pi^+ n -> n \pi^+ \gamma \gamma$
 - $\gamma p \rightarrow X(1600) \Delta^0 \rightarrow \pi^+ \pi^- \pi^+ n \pi^0 \rightarrow \pi^+ \pi^- \pi^+ n \gamma \gamma$
 - $\gamma p -> \rho^0 p -> \pi + \pi^- p$
 - 3 of 4 are simulated at 1 and 2 GeV
 - 2 Background Delta Reactions

$$\gamma p \rightarrow n \pi^+$$

 $\gamma p \rightarrow p \pi^0$

Event Characteristics

- High Energy (9 GeV) Events
 - More energy overall
 - Greater fraction of energy in the forward direction
 - Greater track counts in forward detectors
- Background (1-2 GeV) Events
 - Less energy overall
 - More energy in radial direction
 - Track counts larger in side detectors

Conditional Trigger

- Fairly successful formula:
 - If Energy in Forward Cal < .5 GeV and Tracks in Forward TOF = 0

Or

If Total Energy < .5 GeV and Forward Cal EnergySarrel Cal Energy

Cut

Conditional Trigger Results

• Eval Score 0.786

REACTION	TOTAL	CUT	NOT CUT	%CUT
n3pi_2gev	10000	3088	6912	30.88
n3pi_1gev	10000	4507	5493	45.07
pro2pi_2gev	10000	4718	5282	47.18
pro2pi_1gev	10000	6106	3894	61.06
e2gamma_1gev	10000	4229	5771	42.29
e2gamma_2gev	10000	5389	4611	53.89
delta_npi+	10000	8199	1801	81.99
delta_ppi0	10000	9773	227	97.73
n3pi_9gev	9851	25	9826	0.25
e2gamma_9gev	9962	4	9958	0.04
pro2pi_9gev	9942	30	9912	0.30
xdelta_9gev	10000	50	9950	0.50

Functional Form

- Z >= TFM*TTOF + EFM*EFCal + RM*((EFCal +1)/(EBCal + 1))
 - TTOF Tracks Forward TOF
 - EFCal Energy Forward Calorimeter
 - EBCal Energy Barrel Calorimeter
- How do we decide what values to assign the coefficients and Z?
 - Use a Genetic Algorithm (GA)
- Driving the GA
 - if Background Event and is Cut +1
 - if Good Event and isn't Cut +5
 - if Good Event and is Cut –50
 - if Total number Good Events Cut > 50, reset

Results

- The methodology works for simulated events
 - Good Events:
 - Cuts less than 0.5%
 - Background Events:
 - Average Cut: 72 %
 - Range: 41% to 99.99%
 - Varying hadronic energy deposition doesn't change results
 - Tested with +- 20%

A Note on the Start Counter

- The start counter was never dropped from the trigger.
- James' conclusion: It may not be super useful
- No reason to give up that data if available
- "Latest" design is relatively easy to use
 - (but theta segmentation would have been cool ...sigh!)

From the Electronics Review

- "Concept of local sums at front-end board level, followed by crate-level sums, and subsequent transfer to a central Gobal LVL-1 processing area, is sound."
- "The link work shown should be completed"
- "Concept and proof-of-principle for crate backplane operation at the required high rate needs to be developed for the CDR"
- "Global design for the LVL-1 needs to be developed for the CDR"

Gluex Energy Trigger – Moving Data

- Assume 250 MHz 8 bit flash ADC
 - Assume 16 (?!) Flash ADC channels/board
 - Assume 16 boards/crate -> 256 channels/crate
 - 576 channels in barrel calorimeter -> 3 crates
 - 2200 channels in forward cal -> 9 crates
- Energy addition in real time
 - 256 8 bit channels/crate -> 16 bit sum
 - If 256 12 bit channels/crate -> 20 bit sum
- Each crate must be capable of pumping 20 bits of data at 250 MHz or 625 MBytes/s

Trigger Computation on the FADC board

- 250 MHz 8 bit flash ADC
 - 16 Flash ADC channels/board
 - Each flash functions in "double pump" mode
 - 2 samples at 125 MHz
 - $-16 \times 16 = 256$ bits into Trigger FPGA (on board)
 - Trigger FPGA clocks at 125 MHz
 - Two separate "adder trees"
 - 4 clocks (125 MHz) to complete the add
 - Two 12 bit results every 8 ns (3 Gbit/s)

Crate Summation

- 16 boards/crate
- Data sent to "crate summer"
 - Located in center slot
 - Reduces backplane load, complexity, timing skew
 - 8 x 2 x 12 = 192 bits into crate summer (from each side)
 - Total of 384 bits (at 125 MHz)
 - Difficult

Reduced Time Precision

- Take "average" of each pair of flash samples
- One 12 bit board sum every 8 ns (1.5 Gbit/s)
- Data sent to "crate summer"
 - Located in center
 - Reduces backplane load and complexity
 - $-8 \times 12 = 96$ bits into crate summer (from each side)
 - Total of 192 bits at 125 MHz
 - Do-able

L1 Crate Prototype

- "A concept and proof-of-principle for crate backplane operation at the required high rate needs to be developed for the CDR."
- Topic 1 of CNU's upcoming NSF proposal

Backplane Option 1 – Parallel Data

- Use VME64x-9U style P5/P6 connectors
 - 2mm Hard Metric
 - Outer 2 rows grounded
 - -5 rows x (22 + 25) = 235 signals
- Can be added as separate backplane to VME64x (or Compact PCI) easily
- Can be developed and tested independently

Backplane Option 2 – Serial Data

- Convert Board Sum to serial data
- 12 bits @ 125 MHz -> 1.5 Gbps
- 2.5 Gbps (data rate = 2.0 Gbps)
- 3.125 Gbps (data rate = 2.5 Gbps)
- Will easily fit into 3U space
- Can be built and tested independently

Backplane Option 3 – Test Both

- Build 3U Test Crate
- Custom Backplane
 - Support parallel and serial data transport
- Build "L1 Data Source Modules"
 - Use Xilinx FPGA's
 - built in "Rocket-I/O"
 - Source data parallel (8 bits instead of 12) and serially
- Build "Prototype L1 Crate Summer"
- Test

Clock Distribution

- Need a 125 MHz clock everywhere
- Could use "submultiple" clock
- Local clocks need to be sync'd (i.e. agree on T0)
 - For timestamping to make sense
- All DAQ/Trigger elements are "clock aware"
- Ed Jastrzembski has taken this on

L1 Crate Summer

- Computes total energy in crate
- Tracks clock for timestamping
- Transfers data to "subsystem computer" via the "subsystem link"

Subsystem Link Features

- High speed
 - − With half-speed 8 bit option − 16 bits @ 125 MHz
 - 250 MByte/s = 2 Gbit/s data rate
 - With full speed 12 bit option − 20 bits @ 250 MHz
 - 625 MByte/sec = 5 Gbit/s
- Optical preferred
 - More flexibility in trigger location
 - No noise issues
- Easy-to-use interface
- "Daughter card" design might be good
 - Minimizes layout issues of high speed signals if a single, well tested, daughter card design is used.

Link Subtleties

- Would Like Error Correction
 - Classic "double detection-single correction"
 - Uses Hamming codes
 - Not suitable for fiber optic links errors in bursts
 - Could use forward error correction with delay
 - Only adds a bit of latency if you have bandwidth
- Timestamp embedded in data stream
- Skew adjustment at Subsystem Computer (using timestamp)

S-Link

- An S-Link operates as a virtual ribbon cable, moving data from one point to another
- No medium specification (copper, fiber, etc.)
- 32 bits
- 40 MHz
- 160 Mbytes/s

HOLA at JLAB = JOLA

- Cern's HOLA Slink card used in numerous places
 - Uses TI TLK2501 for higher speed serialization/deserialization
 - Data link clock is 125 MHz (@ 16 bits)
 - Data link speed is 250 MBytes/s
 - Actual throughput is limited by S-Link to 160 MBytes/s
- Obtain license from CERN
- Fabricate our own JOLA boards.
- Test JOLA S-Link cards using existing text fixtures:
 - SLIDAD (Link Source Card)
 - SLIDAS (Link Destination Card)
 - SLITEST (Base Module)

Setup Continued... (JOLA)

JOLA Status

- It works!
- Testing shows that both of the S-Link ends (LSC & LDC), are correctly sending/receiving the data.

S-Link64

- The S-Link cannot keep up. It has a throughput of 160 MBytes/sec, and we need from 250 650 MBytes/sec.
- The S-Link64 is an extended version of the S-Link.
 - Throughput: 800MBytes/sec
 - Clock Speed: 100MHz
 - Data size: 64 bits
 - Second connector handles extra 32 bits

The next step...JOLT (Jlab Optical Link for data Transport)

- S-Link64 will work for us, but a copper cable with a 10 m cable length will not.
- Xilinx's new V-II Pro offers nice features for next gen.
 - The V-II Pro chip can replace both the Altera FPGA as well as the TI TLK2501.
 - Incorporates PowerPC 405 Processor Block
 - Has 4 or more RocketIO Multi-Gigabit transceivers
 - Each RocketIO has 3.125 Gbps raw rate -> 2.5 Gbps data rate
 - 10Gbps (1.25 Gbyte/s) if 4 channels are used.
 - The full S-Link64 spec requires 3 lanes
 - Error correcting will likely require 4 lanes
 - We may be able to use 2 lanes

JOLT – 1 and JOLT -2

- JOLT will give a crate-to-crate transfer rate of 4 x 2.5 Gbit/s or well in excess of S-Link64 spec of 800 Mbyte/s
- First design is Slink (Jolt-1)
 - One lane version
 - Easily testable with current support boards
- Second design is Slink-64 (Jolt-2)
- CERN is interested in our development.
- Topic 2 of upcoming NSF proposal

Level 3 (Software) Trigger

- Input rate -> 100 200 KHz
- Output rate -> 20 KHz
- Need 5-1 to 10-1 rejection
- "Compute" photon energy reject low energy
- "Full" reconstruction
 - Accuracy can be "less than optimum"

Level 3 (Software) Trigger

- Time estimates based on CLAS hit based tracking
 - 3% momentum resolution
 - 0.1 SpecInts per event
 - (1% takes 9x as long)
- Need 20000 Specints in Level 3 farm for 200 KHz
- Design report -> 200 processors @ 200 Specint/proc
- Factor of 2 for overhead
- P4 @ 3.06 GHz is 1100 Specints.
- Likely to have 1600 2000 Specint processors
 - Tradeoff of # processors vs reconstruction precision
- Topic 3 of CNU's upcoming NSF proposal

Conclusion

- Have plan for prototyping L1 crate energy sum
- Have a roadmap to get to very high speed links supporting fully pipelined Gluex triggers
- Borrows liberally from existing designs. Is technically feasible today.
- Have plan for ensuring functioning Level 3 trigger at startup.
- NSF proposal in preparation