

GlueX → Hall D AC Power & Grounding Jefferson Lab September 9, 2004

R. Chris Cuevas
Jefferson Lab
Physics Division
Group Leader -- Fast Electronics

Topics:

- Grounding
- Hall D AC Mains Distribution
- AC Power Requirements
- Summary

Power & Grounding

We have good experience with the Hall B [CLAS]

Careful planning of power grid and grounding grid

Extensive review of AC Mains requirements

Must include grounding grid requirements to civil Engineers

Must identify all large "consumers" of AC Mains

- Superconducting Magnet system
 - Building utilities [HVAC, LCW, Pumps, Crane]

CASE

GROUND

Power & Grounding

Reasons for Grounding

- Shock and Safety Hazard Control
- Reduce lightning related gradients
- Avoid injury to personnel
- Avoid damage to Electrical/Electronic equipment
- Establish return reference
- EMI control

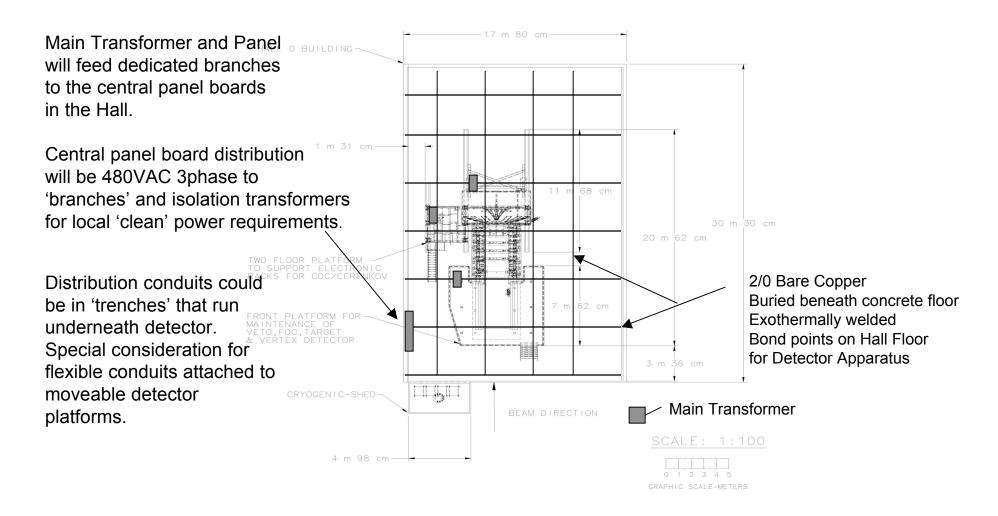
Shield reference for cables, Shielded isolation transformers,,,

Grounding

- Standards
- IEEE 80-2000
 IEEE Guide for Safety in AC Substation Grounding
- NEC Article 250
 National Electric Code Grounding
- "Consultants"

Paul Holik – SNS Experimental Areas

Marvin Johnson – FNAL D0 and CMS "consultant"


Grounding

- Major Objectives for Grounding
- Ground grid design must withstand a maximum ground fault current without danger of melting 'open'
- Ground grid must produce very low voltage between any two points on the ground to prevent personnel hazard

Grounding

- Ground Grid Design and Considerations
- Soil Resistivity
- AC power distribution network
- Grid Geometry and material selection
 - Hall B uses #2/0 AWG bare copper as grid
- All connections underground are 'exothermally' welded
- Building steel and structures will be bonded to the grid
- Consider issues of ground 'interconnection' with Accelerator, Tagger Building and Counting Room

Hall D Grounding Grid AC Mains Distribution

AC Power Requirements

- Must identify and separate power 'branches'
- Facility Utilities
 - -- Lighting circuits

 - -- LCW pumps -- HVAC/Fire Controls
- Large 'Stand-alone' power supplies
 - -- Solenoid Magnet Power
 - -- Tagger Magnet Power
- Beamline equipment
- Cryogenics & Target Instrumentation/Controls
- Other -- Network gear, Camera Systems,

Preliminary AC Power Budget

	Detector System Description	"# of Crates"	Power/Unit [KVA]	Power [KVA]
1	Tagger Power Supply	1	80	80
2	Solenoid Power Supply	1	25	25
3	Collimator Magnet Supplies	1	5	5
4	Tagging Electronics	2	2	4
5	Tagger HV	1	3	3
6	CDC	21	2	42
7	FDC	36	2	72
8	CDC HV and Bias supplies	2	3	6
9	FDC HV and Bias supplies	2	3	6
10	Barrel Calorimeter	4	2	8
11	BCal HV and Bias supplies	1	3	3
12	Vertex & Start Counters	2	2	4

Preliminary AC Power Budget Continued,

	Detector System Description	"# of Crates"	Power/Unit [KVA]	Power [KVA]
13	Vertex, Start Counter HV & Bias	2	3	6
14	Lead Glass Calorimeter	16	2	32
15	Cockroft Walton DC supplies	2	1	2
16	Cerenkov Readout	1	2	2
17	Cerenkov HV	1	3	3
18	TOF Readout	1	2	2
19	TOF HV	1	3	3
20	Photon Veto Readout, HV	1	2	2
21	Trigger System	2	3	6
22	Network Gear	6	0.5	3
23	Target Instrumentation	1	2	2
	TOTAL	105		321

Summary

- Excellent references and experience at JLAB for AC Mains distribution and grounding grid design
 - Specific details of AC Mains distribution will continue as detector apparatus develops.
 - Location of clean power transformers and power conduits will need to be determined at time of civil construction
- Integration between detector system electronics needs to be studied to prevent 'ground loops' and identify best techniques for shielding against noise sources.

•