

DANIEL S. CARMAN OHIO UNIVERSITY

OUTLINE :

- PURPOSE & DESIGN GOALS
- MONTE GARLO STUDIES
- **PROTOTYPING EFFORTS**
- DESIGN ISSUES

Forward Drift Chambers

 Measure momenta of charged particle tracks emerging from the target up to 30° relative to the photon beam line.

(FDC only 0–10°; CDC+FDC 10–30°)

Goal:

Space points in each coordinate measured with ~150 µm resolution.

Forward Drift Chambers

- Wire planes sandwiched between U & V cathode strip planes.
- Neighboring layers within package rotated by 60°.
- Total number of channels/package = 3570:

119 anode wires/plane x 6 planes = 714 channels

238 cathode strips/ plane x 12 planes/package = 2856 channels

• Total number of channels = 14280.

Cathode Strip Chambers

- Due to spiraling trajectories and high multiplicity of charged tracks through FDC, system MUST provide:
 - sufficient redundancy to enable reliable pattern recognition.

 $(N_{trk} \sim 3-6 tracks/evt + bck)$

- good spatial resolution and direction information.

 Determine precision charged track coordinate by interpolating charge on 3–5 adjacent cathode strips.

Measure Q_i distribution with S:N > 100:1.

• Accurate intercalibration of adjacent channels essential.

Position accuracy unaffected by gas gain or drift time variations.

Assumptions: 150 μ m resolution; equal package spacing along z.

Single track resolution similar for 3 and 4 package designs. But, redundancy essential for pattern recognition!!

GlueX Detector Review -- Oct. 20-22, 2004

Initial Prototyping Efforts

Standard CSC design:

(b)

1.2

x—axis [cm]

i). No anode wire readout

-1.2

-0.4

0.2 0,4 9,0 0,8

Particle ID= Electron Delta T= 0.1000 [Micro sec] ELECTRODE **CONFIGURATION??**

FDC Prototype #1

Test bed for optimizing the wire plane and cathode plane electrode configurations.

 1 anode plane consisting of 16 sense wires (10 mm separation) Second configuration with alternating anode and field wires.

Understand trade-offs between position resolution at cathode
plane and timing resolution in the wire plane.

- 2 cathode planes oriented at 45° with respect to wires and 90° with respect to each other.
- Signal routing circuit boards with SIP preamps (CLAS DC design).

FDC Prototype #1

Cathode Planes

Copper–plated kapton, 32 strips, 5 mm pitch, dielectric thickness = 50 μm.

Several cathode planes designed: strip separations = 0.25, 0.50, 1.0 mm.
(+ planes perpendicular to wire direction)

GlueX Detector Review -- Oct. 20-22, 2004

FDC Pre-Amp Boards

- Preamplifier properties:
 - Gain 2.25 mV/μA
 - fast rise and fall time (3-4 ns)
 - wide frequency bandwidth
 - wide dynamic range
 - low noise
 - low power dissipation (65 mW)
- SIP performance will be used as a benchmark for performance comparisons.

Presently cathode and anode amplifier boards are identical except for cathode polarity inversion.

Coincidence logic in NIM electronics.

Cosmic ray test chamber anode signals amplified and discriminated by chamber-mounted LeCroy 2735DC boards with adjustable thresholds.

Timing signals read out with LeCroy 1877S multi-hit FASTBUS TDCs.

• FDC prototype signals amplified by Hall B "SIP" preamps.

Anode signals discriminated by LeCroy 3412E and digitized by 1877S TDC. Cathode signals read out with LeCroy 1881M FASTBUS ADC.

Test Setup for Prototype Studies

GlueX Forward Drift Chamber Report

FDC Test Plan

• A detailed test plan outlining the FDC prototyping effort has been provided to the collaboration.

> Prototype Assembly

- chamber cleaning
- wire plane stringing
- electronics mounting
- stack assembly

> Resolution Studies

- cosmic–ray telescope
- single track resolution
- two-track resolution
- electrode configurations
- cross talk measurements
- efficiency

> Bench Testing

- short checking
- gas flow
- HV plateau
- gas gain measurements
- noise measurements

> Miscellaneous

- magnetic field studies
- wire deadening
- RF noise pickup
- alignment & positioning
- internal chamber supports

Hall D Forward Drift Chamber Prototype Test Plan

August 4, 2003

Department of Physics Ohio University Athens OH 45701 USA

Future Prototyping

• In terms of detector prototyping, we foresee that at least two working chamber prototypes will be required to complete the FDC R&D.

Main design issues include:

 Mechanical design issues. (field uniformity)

> On-chamber electronics design/layout.

Design work to commence in the late winter/early spring.

Full scale mock-ups for testing chamber mounting & alignment schemes + cable routing + installation.

INCREASE ACCESSIBILITY TO MINIMIZE DOWN TIME.

- Gas system design (TJNAF detector group).

Cathode Resolution Effects

- Fractional charge on cathode is not important for cathode precision.
 - Relative charge measurement.
 - Must be reasonably uniform for operational stability.
- Must control gas gain for time-to-distance calibration.
 - Cathode resolution relatively independent of gas gain.

- However, gas gain affects time walk correction for drift time.

 To keep stable to +/- 20%, gap tolerance must be defined to roughly 100 μm.

Chamber Failure Modes

- An important design aspect is to understand potential chamber failure modes.
 - Understand impact on system operation.
 - Affect design to minimize impact.
 - Minimize access time to system within solenoid.
 - Design must allow for access to critical detector components.

- **Broken wires**
- **LV** transformer failure
- Circuit board short
- Preamp corrosion
- **High current draw**
- Cable disconnect
- Increased noise

- **Swapped cables**
- HV disconnect
- LV disconnect
- Pinched gas line
- **Gas leak**
- **Window tear/rupture**
- Internal chamber short

Other Issues & Conclusions

- Current prototype chamber under study to optimize basic electrode design.
- Converge on appropriate redundancy.
- Need to study and test different gas mixtures for performance.
- Move ahead with R&D program for on-chamber electronics.
- Work to design full-scale prototype.
- Finalize FADC design for FDC system.
- In-beam cathode chamber tests.
- Study how to deaden wires about the beam hole.

Backup Slides for Review

Forward Drift Chamber Timeline

FDC R&D Issues

Optimization of electrode configuration. Circuit board design. Mechanical support design. **Optimization of gas choice.** Performance in magnetic field. Performance in RF environment. Noise immunity. Manufacturing techniques. Strip-to-strip intercalibration. Pulse shaping and amplification. **Radiation tolerance assurance.** Gain monitoring. Mounting and alignment. Serviceability. Cable routing. Aging.

Pattern Recognition

Monte Carlo simulations indicate the following:

- charged particle rate across FDC chambers ~1 MHz.

- expect roughly 3-6 charged tracks per event.

- expect roughly 1-2 background tracks per event.
- expect a few % occupancy due to photon conversions, etc.

Redundancy is crucial to allow for accurate pattern recognition.

Experience from CLAS provides clear direction for successful L/R resolution and pattern recognition:

Alternate Cathode Design

• Other groups (e.g. ATLAS) have constructed chambers with fewer cathode readout strips (w/d > 1).

Maintain: acceptable resolution, minimal differential non-linearity.

Intermediate strips capacitively coupled together.

Hall D Layout

FDC Specifications

Parameter	Value
Wire spacing s	10 mm (anode-anode), 5 mm (anode-field)
Anode-cathode distance, d	5.0 mm
Cathode readout pitch, w	5.0 mm
Gap between cathode strips, w_g	1.0 mm
Width of cathode strips	4.0 mm
Capacitance between strips	$0.6 \mathrm{\ pF/cm}$
Resistance between strips	$\sim 20 M\Omega$
Anode wire radius, r_a	0.010 mm
Wire capacitance per unit length, C_0	$\sim 9 \text{ pF/m}$
Gas gain	4×10^{4}
Operating voltage at nominal gain	1800 V
Electric field at cathode, E_c	<1 kV/cm
Electric field on anode wire surface	280 kV/cm
Field-shaping wire radius	0.040 mm
Electric field on field-shaping wire surface	15 kV/cm
Positive ion mobility, μ^+	$1.3 \text{ cm}^2/\text{V/s}$
Total ion pairs	180
Minimum wire tension	50 gm
Total charge collected	$\sim 50 \text{ fC}$
Charge collected in $30 \text{ ns} (\%)$	$\sim 20\%$