GlueX Particle Identification

Ryan Mitchell
Indiana University
Detector Review, October 2004

Outline

- I. Introduction to each of the four particle identification components.
- II. General characteristics of GlueX physics events and the match between physics and detectors.
- III. The likelihood method as a unified way of making decisions.
- IV. A detailed simulation of the reaction: $\gamma p \to K^*K^*p \to (K^+\pi^-)(K^-\pi^+)p$.

dE/dx from the CDC

Black = Proton

Blue = Kaon

Red = **Pion**

Green = Electron

- -- Argon-based gas.
- -- Estimated 10% dE/dx resolution.
- $--3\sigma$ proton separation below 1 GeV/c.
- -- 3σ kaon separation below 500 MeV/c.
- -- Some separation in relativistic rise.

Time of Flight from BCAL

Black = Proton

Blue = Kaon

Red = **Pion**

Green = Electron

- -- Estimated 250 ps resolution.
- -- Plus 1% momentum and length resolutions.
- $--3\sigma$ protons below 1.5GeV/c.
- $--3\sigma$ kaons below 1.0GeV/c.

CKOV Photo-Electrons

Black = Proton

Blue = Kaon

Red = Pion

Green = Electron

The CDR design (C_4F_{10}) :

Index of Refraction = 1.0015

Length = 80 cm

Efficiency = 90 cm^{-1} .

Pion Threshold = 2.5 GeV/c

DIRC Cerenkov Angle

Black = Proton

Blue = Kaon

Red = Pion

Green = Electron

- -- Estimated 2.1 mrad resolution.
- -- 3σ protons between 450MeV/c and 6.8GeV/c.
- -- 3σ kaons between 130MeV/c and 4.0GeV/c.

Time from the TOF Wall

Black = Proton

Blue = Kaon

Red = Pion

Green = Electron

- -- Estimated 70 ps resolution.
- -- Plus 1% momentum and length resolutions.
- $--3\sigma$ protons below 3.0GeV/c.
- $--3\sigma$ kaons below 1.8GeV/c.

Starting Momentum Spectra

Starting momenta for four reactions:

1.
$$\gamma p \rightarrow \pi^+\pi^-p$$

2.
$$\gamma p \rightarrow K^+K^-p$$

3.
$$\gamma p \rightarrow K^*K^*p$$

 $\rightarrow K^+\pi^-K^-\pi^+p$

4.
$$\gamma p \rightarrow K_1 K^- p$$

 $\rightarrow K^+ \rho K^- p$
 $\rightarrow K^+ \pi^+ \pi^- K^- p$

Black = proton, **Blue** = **Kaons**, **Red** = **Pions**

Where do tracks go?

Proton Identification

Central Protons:

curves = separations (σ)histogram = central protonmomentum spectrum

⇒Good Separation

Central Proton Identification

Forward Protons:

curves = separations (σ)
histogram = forward proton
momentum spectrum

⇒Even Better Separation

Forward Proton Identification

Kaon Identification

Central Pion/Kaon Identification

Central Kaons:

-- 3σ separation
below 1 GeV/c
-- ~2σ separation
above 2 GeV/c

Forward Pion/Kaon Identification

Forward Kaons:

Gas Option:

-- 3σ separationbelow 1.8 GeV/c-- ~5pe separationabove 3.0 GeV/c

DIRC Option:

-- 3σ separation below 4.0 GeV/c

The Likelihood Method

 Make particle identification decisions based on calculated likelihoods for different hypotheses:

L(i) = probability a given track is of type i, where $i = \pi, K, p$.

• A convenient way to incorporate information from a variety of different detector elements:

$$L(i) = {}^{CDC}L(i){}^{BCAL}L(i){}^{CKOV}L(i){}^{TOF}L(i)$$

Calculating Likelihoods (I)

Tracks at the TOF wall:

Given a track with momentum p and pathlength L hitting the TOF,

$${}^{TOF}L(i) = \frac{1}{\sqrt{2\pi}\sigma_i} e^{-(t-t_i)^2/2\sigma_i}$$

i = particle hypothesis

t_i = predicted measurement

 σ_i = predicted error

(70ps time resolution for TOF,

1% momentum res.,

1% length res.)

t = actual measurement

Calculating Likelihoods (II)

- Similar Gaussian calculations are used for:
 - Time of flight in the BCAL ($\sigma_i = 250 ps$)
 - dE/dx in the CDC ($\sigma_i = 10\%$)
 - $-\theta_c$ in the DIRC ($\sigma_i = 2.1$ mrad)

• Likelihoods for the gas Cerenkov are based on a Poisson distribution of the expected and measured numbers of photoelectrons.

Making a Decision

• Use a likelihood ratio test to decide between hypotheses:

$$R(i) = -2ln\{ \ L(i) \ / \ (\ L(\pi) + L(K) + L(p) \) \ \}$$
 is a χ^2 statistic with one d.o.f.

• The requirement:

rejects hypothesis i at the 90% confidence level.

A First Algorithm

- Pion Identification:
 - -- Reject kaons: R(K) > 2.7
 - -- Don't reject pions: $R(\pi) < 2.7$
- Kaon Identification:
 - -- Reject pions: $R(\pi) > 2.7$
 - -- Don't reject kaons: R(K) < 2.7
- Proton Identification:
 - -- Reject pions: $R(\pi) > 2.7$
 - -- Reject kaons: R(K) > 2.7
 - -- Don't reject protons: R(p) < 2.7
- There is a lot of room for innovation (for example, incorporating strangeness conservation).

A Simulation of $\gamma p \rightarrow K^*K^*p$

- Generate events with:
 - -- a beam energy of 9GeV
 - -- K*K* mass between threshold and 3GeV/c²
 - -- t' distributed as e^{-10t'}.
- Put the events through a GEANT simulation recording hits at each of the detector elements.
- Smear the particle identification measurements by the expected resolutions.
- Calculate likelihoods and make particle id decisions.

Proton Results

Central Protons:

(62.58% of total)

ID Rate: 99.2%

MisID: 0.6%

Forward Protons:

(30.27% of total)

ID Rate: 99.1%

MisID: 0.0%

Overall:

ID Rate: 94.3%

MisID: 0.4%

Central Pions and Kaons

Good identification below ~1GeV/c.

Above ~1GeV/c ID rates drop to around 60%.

Central Pion/Kaon Identification

Central Pions:

(50.4% of total)

ID Rate: 76.4%

MisID: 5.6%

Central Kaons:

(43.7% of total)

ID Rate: 64.0%

MisID: 10.1%

Forward Pions and Kaons

Forward Pions:

(38.8% of total)

With Gas

ID Rate: 94.4%

MisID: 1.5%

With DIRC

ID Rate: 98.6%

MisID: 0.3%

Forward Pion/Kaon Identification

ID Rate: 91.4%

Forward Kaons:

MisID: 4.8%

1.2

0

ō

Pion ID

With DIRC

ID Rate: 90.3%

MisID: 2.0%

Overall Identification

Angular Acceptances

• One of the central physics goals of GlueX is to perform angular analyses of resonance decays.

- In order to do this with confidence, it is crucial to have well-understood and nearly uniform acceptances in the decay angles.
- In fact, this is at least as important as overall rates and efficiencies.

Gottfried-Jackson $\cos\theta$ Acceptances ($\gamma p \rightarrow K^*K^*p$)

Cosθ is defined between the direction of one of the K* and the direction of the beam in the K*K* rest frame.

Gas option:

Preference for forwardbackward decays due to the hole in the forward acceptance.

DIRC option:Very flat acceptance.

DIRC

cost

Summary

- The CDC and BCAL will identify low momentum central tracks.
- The forward TOF and either a gas CKOV or a DIRC will identify forward tracks.
- Using a likelihood method in a typical reaction like $\gamma p \rightarrow K^*K^*p$, we identify:
 - -- ~94% of all protons
 - -- ~80% of all pions
 - -- ~70% of all kaons