

presented by

Richard Jones, University of Connecticut

GlueX Tagged Beam Working Group

University of Glasgow University of Connecticut Catholic University of America

Photon Beam: coherent bremsstrahlung

Crite	eria		Design options		
	high energy	8-9 GeV	A. laser backscatter		
	linear polarization	0.5	B. synchrotron backscatter		
	high flux	10 ⁸ s ⁻¹	C. bremsstrahlung		
	energy resolution	10 MeV r.m.s.	D coherent bremsstrahlung		
	low background				

"figure of merit" = (rate in 8-9 GeV window) * (polarization)² @ constant b.g.

А	В	С	D
x	**	***	**
***	***	×	**
x	×	***	***
(†)	(†)	(†)	(†)
***	***	*	**
	A x * ** x (†) * **	A B X ** *** *** X X (†) (†) *** ***	ABC \mathbf{X} $\star \star \star$ $\star \star \star$ $\star \star \star$ $\star \star \star$ \mathbf{X} $\star \star \star$ $\star \star \star$ \mathbf{X} \mathbf{X} \mathbf{X} $\star \star \star$ (\mathbf{t}) (\mathbf{t}) $\star \star \star$ $\star \star \star$

(†) with tagging

Photon Beam: energy spectrum

effects of collimation: reduce low-energy background and increase polarization

Photon Beam: collimation

With increased collimator distance:

- polarization grows
- Iow-energy backgrounds shrink
- tagging efficiency drops off

Richard Jones, GlueX Detector Review, Newport News, October 20-22, 2004

Photon Beam: collimation

Electron Beam: properties

Richard Jones, GlueX Detector Review, Newport News, October 20-22, 2004

Diamond crystal: properties

Diamond crystal: goniometer mount

Tagging spectrometer

Tagging spectrometer: two dipole design

Tagger focal plane: fixed array

- □ 141 counters, each subtending 60 MeV (0.5% E_0)
- plastic scintillator paddles oriented perpendicular to rays
- designed for minimal overlap
- conventional phototube readout
- essential for diamond crystal alignment
- useful as a monitor of photon beam
- □ cannot run in counting mode at full source intensity

Tagger focal plane: microscope

- Design parameters
 - □ square scintillating fibers
 - size 1 mm x 1 mm x 20 mm
 - clear light guide readout
 - aligned along electron direction
 - exploits the maximum energy resolution of the spectrometer
 - readout with silicon photomultipliers
 (SiPM devices)
 - □ dispersion is 1.4 mm / 0.1% at 9 GeV
 - □ 2D readout to improve tagging efficiency

Beam line: active collimator

Monte Carlo simulation

current asymmetry vs. beam offset

Beam line: polarimetry

Design parameters

- measures azimuthal plane of e⁺e⁻ pair production
- pair spectrometer allows selection of symmetric pairs
- typical opening angle of pairs is of order 100 μr
- requires 1-2 m of flight path inside vacuum from target to microstrip tracker
- pair spectrometer gap downstream of tracker planes
- scintillators detect pairs from spectrometer, provide trigger

Beam line: shielding

overhead view of collimator cave cut through horizontal plane at beam height

Beam line: physics simulation

- GEANT-based Monte Carlo
 - based on a coherent bremsstrahlung generator
 - good description of electromagnetic processes
 - extended to include hadronic photoproduction processes
 - 1. γ ,N scattering
 - 2. γ , A single nucleon knockout
 - 3. γ,π pion photoproduction
 - complete description of beam line including collimator and shielding
 - integrated with detector sim.

Beam line: rates and background

- 1. Total hadronic rate is dominated by the resonance region
- 2. For a given electron beam and collimator, background is almost independent of coherent peak energy, *comes mostly from incoherent part.*

peak energy	8 GeV	9 GeV	10 GeV	11 GeV
N_{γ} in peak	185 M/s	100 M/s	45 M/s	15 M/s
peak polarization (f.w.h.m.)	0.54	0.41	0.27	0.11
	(1140 MeV)	(900 MeV)	(600 MeV)	(240 MeV)
peak tagging eff.	0.55	0.50	0.45	0.29
(f.w.h.m.)	(720 MeV)	(600 MeV)	(420 MeV)	(300 MeV)
total hadronic rate	385 K/s	365 K/s	350 K/s	345 K/s
(in tagged peak)	(26 K/s)	(14 K/s)	(6.3 K/s)	(2.1 K/s)