
Getting Started with DANA

D. Lawrence

Jefferson Lab

May 23, 2005

Abstract

The Hall-D Data ANAlysis framework (DANA) provides the mechanism by which
various pieces of the reconstruction software are brought together to fully reconstruct the
data. This document is intended for user’s new to the DANA system. This includes both
end user’s who simply want to get at the data for their own analysis, and person’s writing
reconstruction code for a particular subsystem. It is purposely kept short to minimize
your TTR (Time To Results).

1

Contents

1 Introduction 3

2 Getting and Compiling the Source Code 3

3 Running the software 4
3.1 Generating a Data File . 4
3.2 hd dump . 6
3.3 hd ana . 6
3.4 hdview . 6

4 Adding your own code 6
4.1 “I just want to make a histogram!” . 7
4.2 Writing a Factory . 7

5 Questions 11

A Source for hd ana program 12

B Glossary of Terms 17

C Other Useful Documents 18

2

1 Introduction

The DANA system is centered around the idea of data factories. In the DANA system,
a factory is an object which takes one or more inputs and produces a single output. The
inputs and outputs are lists of objects. So, for example, if I wanted to produce a list of
showers in the forward lead glass calorimeter (FCAL), I would first need a list of hits in
the FCAL. Similarly, in order to produce a list of tracks, I would first need a list of hits
in the CDC, FDC, etc. In general, factories get their inputs from other factories. End
point users (persons doing an analysis and not trying to produce a list for anyone else)
get at the data in the same way, by accessing the factories.

The factory objects themselves provide “data on demand” 1. What this means is that
when an event is read in, nothing is analyzed until the data is actually requested from the
factory. If the program being run is only interested in Barrel Calorimeter (BCAL) data,
then there is no need to do things like full scale tracking or FCAL reconstruction on the
event. Since factories get their input from other factories, a linked “web” of factories is
naturally formed with each knowing what factories it needs to access for its inputs.

2 Getting and Compiling the Source Code

The Hall-D reconstruction code is kept in a CVS repository on the Hall-D group disk
(/group/halld/Repositories/cvsroot) at Jefferson Lab. To access it, you need an account
on the JLab CUE which belongs to the halld unix group2. Follow these steps to checkout
and compile the code:

• Create working directory: All of the source code and binaries will reside in this
directory. It can be named anything and placed anywhere. In my account, I use
/home/davidl/HallD.

• Set HALLD HOME environment variable: The HALLD HOME variable should
be set to the working directory you just made. The makefile system 3 uses this to
find the source code and place the resulting binaries. So, for my account this is set
to /home/davidl/HallD.

se tenv HALLD HOME /home/ dav id l /HallD

(I use tcsh in these instructions I’ll leave it to bash users to translate where appro-
priate.)

• Checkout the source: Go into your working directory and checkout the code by
doing the following:

cd $HALLD HOME
setenv CVS RSH ‘ which ssh ‘
se tenv CVSROOT cvs . j l a b . org : / group/ ha l l d / Repo s i t o r i e s / cv s r oo t
cvs co s r c inc lude

1This concept is also called “just in time”.
2contact the JLab Computer Center if you need don’t already have such an account
3See GlueX-doc-473 on the BMS system

3

Note that this assumes the account you’re issuing the command from has the same
username as your JLab CUE account. If not, prefix CV SROOT with your JLab
account name followed by an ‘@’ 4.

• Move the include directory: Hopefully this step will be removed in the near
future. But for now, you’ll need to move the include directory you just checked out
into the src directory (that you also just checked out).

mv inc lude s r c

• Compile the libraries: Go into the src/libraries directory and run gmake:

cd s r c / l i b r a r i e s
gmake

This should build all of the libraries and place them in $HALLD HOME/lib/$OSNAME
where $OSNAME is the uname of the system you’re working on (e.g Linux).

• Compile the executables: Go into the src/programs/Analysis and run gmake in
the hd dump, hd ana, and hdview directories:

cd $HALLD HOME/ s r c /programs/ Ana lys i s
gmake −C hd dump
gmake −C hd ana
gmake −C hdview

The executables will be placed in the $HALLD HOME/bin/$OSNAME directory.
These programs do the following:

– hd dump Dump ASCII output to screen from all factories

– hd ana Generates a couple of example ROOT histograms

– hdview Graphical drawing of data

3 Running the software

All of these programs use the same command line parser routine that is part of DANA.
This just means, is that any command line argument that does not begin with a “-” is
assumed to be a data file5. Each of the programs will loop over all events in all of the
data files specified on the command line. See the sections below for examples.

3.1 Generating a Data File

If you already have an HDGeant produced data file then you can probably skip this
section. Note though that HDDM can be very picky about version numbers in files so if
you have an old file, the executables may simply exit with an error.

Here, I’ll assume you have a working hdgeant executable. For the sake of simplicity, I’ll
show how to use the single particle generator built into hdgeant. The only thing you really

4e.g. joe@cvs.jlab.org:/group/halld/Repositories/cvsroot
5At this point in time, the only format we have for data files is HDDM

4

need is a file called control.in in the directory you run hdgeant from. Here’s an example
one that throws 1.5GeV µ+s from the center of the target (z=65cm) at randomly chosen
angles. See the GEANT documentation for descriptions of the uncommented “cards”.

Listing 1: control.in

TIME 1 . 1 . 1000000
TRIG 1000000
RUNG 9999

C The f o l l ow ing card enab l e s s i n g l e−track gene ra t i on (f o r t e s t i n g)
C Note : i f you REALLY want the s p e c i f i e d theta /phi f o r every event ,
C you must add 100 to the p a r t i c l e type . Otherwise , theta and phi
C w i l l be randomly chosen .
C p a r t i c l e energy theta phi ver tex (x y z)
KINE 5 1 .5 10 . 265 . 0 . 0 . 65 .

RNDM 172

CUTS 1e−4 1e−4

SWIT 0 0 0 0 0 0 0 0 0 0

C The f o l l ow ing card enab l e s the GelHad package (from BaBar)
C on/ o f f ecut s c a l e mode thresh
GELH 1 0 .2 1 . 0 4 0 .160

HADR 1
CKOV 1
LABS 1
LOSS 1
MULS 1
MUNU 1
PAIR 1
PFIS 1
PHOT 1
RAYL 1
STRA 1
SYNC 1

C The NOSECONDARIES card i s s p e c i f i c to HDGeant . Se t t ing i t to a non−zero
C va lue w i l l s k ip c a l l s to GSKING()
NOSECONDARIES 1

C The BFIELD card i s s p e c i f i c to HDGeant . Se t t ing i t to some va lue
C (in Tes la) w i l l cause the t r a ck ing to use a complete ly homogeneous
C magnetic f i e l d with t h i s va lue in the Z (beam) d i r e c t i o n . Otherwise ,
C the TOSCA generated f i e l d map(dso l eno id . t a b l e) w i l l be used .
BFIELD −2.0

END

Run hdgeant without any arguments. It will produce several files, but the only one

5

you’re interested in is called hdgeant.hddm.

3.2 hd dump

The hd dump program is a very basic one that can be used to dump single events in ASCII
format to the terminal. Run it with no arguments to see a usage statement. Basically,
to see the output of any factory, just use the −D option. For example, the following will
dump the contents of both the DBCALHit and DFCALHit factories:

hd dump −DDBCALHit −DDFCALHit hdgeant . hddm

This program is useful just to see that you’re able to read the data. It relies on
the factory objects themselves to format the output. Since factories are not required to
implement a “toString()” method, some of them may not produce very useful output from
hd dump. At the very least, the factory name and the number of elements will always be
printed.

3.3 hd ana

The hd ana program is intended to be the definitive example program for end user anal-
ysis. It opens a ROOT file, creates a few histograms, and then fills them using data
obtained through DANA. If you’re writing a new analysis program, you probably just
want to copy the source from this directory and edit from there.

It is worth compiling and running to test that things are working. Run it like this:

hd ana hdgeant . hddm

3.4 hdview

The hdview program provides a simple 2-dimensional graphical representation of events.
It was developed to help visualize things for tracking and so may be of limited use for
other systems. Nevertheless, it has some basic diagnostic value. Run it just like all of the
other programs:

hdview hdgeant . hddm

4 Adding your own code

At this point, you should have a working copy of the Hall-D source code and an hdgeant
produced data file (hdgeant.hddm) to work with. Modifying the source can be broken up
into two groups:

• End User: Basically, these are executable programs. If you’re just looking to make
some histograms or trees, then you belong in this group. Projects in this group
create a class derived from DEventProcessor. See section 4.1.

6

• Factories: Projects in this group perform some piece of reconstruction or analysis
that is made available to other factories or end user’s. These are kept in libraries,
usually with other related factories. See section 4.2.

4.1 “I just want to make a histogram!”

Oh you do, do you? Good, you’ve come to the right place. The best tutorial for this is
actually to look at the example program hd ana. The source for this program is kept in
$HALLD HOME/src/programs/Analysis/hd ana. For convienience, the source has been
included in this note in appendix A. The basic idea is this: You need to create a class
which inherits from the DEventProcessor class. You can then overide any of the methods
corresponding to the 5 phases of the data processing:

• init(void) Called once at initialization

• brun(int runnumber) Called anytime the run number changes. Guaranteed to be
called once before the first call to evnt().

• evnt(int eventnumber) Called every event.

• erun(void) Called when the run number changes (iff brun() was already called) or
after all events have been processed.

• fini(void) Called once after all events have been processed.

You create a single instance of your derived class and pass a pointer to it to the
framework. Control is then handed over to the framework which will call the above
methods of your class at the appropriate times.

Inside your evnt() method, you will request data objects from the framework. The
framework will look through its list of factories until it finds the one which produces the
requested data type and returns a list of those objects to you.

4.2 Writing a Factory

If you are writing reconstruction code that produces output for others to use, then you
should write a factory. A factory consists, at a minimum, of 3 files:

• the produced object header

• the factory object header

• the factory object methods

These can be produced using the mkfactory script which resides in the scripts directory
in CVS 6. Invoke the script with the name of the data object you’d like to generate with
the factory. For example:

mkfactory DPart ic l e

6cvs -d cvs.jlab.org:/group/halld/Repositories/cvsroot co scripts/mkfactory

7

would produce 3 files named DParticle.h, DFactory DParticle.h, and DFactory DParticle.cc.

The 2 header files should be copied to the $HALLD HOME/src/libraries/include
directory. The source should be placed in the appropriate subsystem directory. For exam-
ple, a factory dealing with BCAL should be placed in the $HALLD HOME/src/libraries/BCAL
directory. In that same directory, there is a file named something like BCAL init.cc which
looks like this:

Listing 2: BCAL init.cc

// $Id : BCAL init . cc , v 1 . 2 2005/04/06 19 :13 : 48 dav id l Exp $

#inc lude ”DEvent . h”
#inc lude ”DFactory DBCALHit . h”

d e r r o r t BCAL init (DEvent ∗ event)
{

/// Create and r e g i s t e r BCAL data f a c t o r i e s
event−>AddFactory(new DFactory DBCALHit ()) ;

r e turn NOERROR;
}

BCAL init() (as well as all of the other subsystems’ ∗ init routines) gets called when
the DEventLoop object is instantiated in the main() routine of all programs using DANA.
This is how your factory gets added to the list of factories kept by the DANA.

One thing to keep in mind is that a program may be multi-threaded. In this case,
multiple objects of your factory class may be created. Basically what this means is that
you should just avoid using global or static variables.

The place where you actually want to place your code for the factories is in the init(),
brun(), evnt(), erun(), and fini() methods7 of your new DFactory class. The most com-
mon usage, however, will be to read calibration constants in brun() and then do the actual
reconstruction in evnt().

The factory will produce data in the form of objects. More specifically, the factory will
fill an STL vector of pointers to objects which the factory creates. The DANA framework
will automatically delete these objects when the next event is read in. So, the first thing
you need to do is finish the definition of the class by adding the data fields. Listing 3 shows
an example of a class DMCReconstructed produced by a factory. The mkfactory script
created everything in this file except the lines after HDCLASSDEF (DMCReconstructed).
The HDCLASSDEF (DMCReconstructed) is a DANA defined macro that places a cou-
ple of methods in the class which it needs. It must be placed in the public area of the class.

Notice that each data element in listing 3 has a comment prefaced with “/// <”. This
special comment delimiter is used by the Doxygen documentation system to present the

7see section 4.1

8

class definition in the web-based documentation in the proper place.

Listing 3: DMCReconstructed.h

// $Id : DMCReconstructed . h , v 1 . 3 2005/04/25 19 :20 : 39 dav id l Exp $
//
// F i l e : DMCReconstructed . h
// Created : Sun Apr 3 12 :28 : 45 EDT 2005
// Creator : dav id l (on Darwin Har r i e t . l o c a l 7 . 8 . 0 powerpc)
//

#i f n d e f DMCReconstructed
#de f i n e DMCReconstructed

#inc lude ”DFactory . h”

c l a s s DMCThrown ;

c l a s s DMCReconstructed{
pub l i c :

HDCLASSDEF(DMCReconstructed) ;

i n t type ; ///< GEANT p a r t i c l e ID
f l o a t q ; ///< e l e c t r i c charge
f l o a t p ; ///< Total momentum in GeV/c
f l o a t E; ///< Total energy in GeV
f l o a t theta , phi ; ///< I n i t a l theta and phi ang l e s in r ad ians
f l o a t x , y , z ; ///< Vertex po s i t i o n in cm
f l o a t mass ; ///< Mass in GeV/cˆ2
i n t thrownid ; ///< index to c l o s e s t match in DMCThrown
f l o a t thrown de l ta p ; ///< Magnitude o f momentum d i f f . with thrownid

void FindClosestThrown (vector<const DMCThrown∗> &mcthrowns) ;
} ;

#end i f // DMCReconstructed

The next step is to create objects in your factory’s evnt() method and add them to
the data vector of your factory. The variable data is a vector whose type is based on the
class of the objects the factory creates. Listing 4 shows the evnt() method for the factory
that creates the DMCReconstructed objects. This factory accesses data from two other
factories in order to produce its output. The key thing to notice is that near the bottom
of the routine is a line data.push back(mcreconstructed). This is how the objects are
stored so that DANA can access them. DANA will take care of casting the pointers as
const before delivering them to others. DANA will also take care of deleting the objects
later, when the next event is read in.

Listing 4: DFactory DMCReconstructed.cc

// $Id : DFactory DMCReconstructed . cc , v 1 . 3 2005/05/06 13 :59 : 08 dav id l Exp $
//

9

// F i l e : DFactory DMCReconstructed . cc
// Created : Sun Apr 3 12 :28 : 45 EDT 2005
// Creator : dav id l (on Darwin Har r i e t . l o c a l 7 . 8 . 0 powerpc)
//

#inc lude ”DMCTrackCandidate . h”
#inc lude ”DMCThrown . h”
#inc lude ”DFactory DMCReconstructed . h”
#inc lude ”DEvent . h”

//−−−−−−−−−−−−−−−−−−
// evnt
//−−−−−−−−−−−−−−−−−−
d e r r o r t DFactory DMCReconstructed : : evnt (i n t eventnumber)
{

// For now , we j u s t copy from the MCTrackCandidates . Eventual ly ,
// a track f i t t e r w i l l be implemented .
vector<const DMCTrackCandidate∗> mctc ;
event−>Get (mctc) ;

vector<const DMCThrown∗> mcthrowns ;
event−>Get (mcthrowns) ;

f o r (uns igned i n t i =0; i<mctc . s i z e () ; i++){
const DMCTrackCandidate ∗mctrackcandidate = mctc [i] ;
DMCReconstructed ∗mcreconstructed = new DMCReconstructed ;

mcreconstructed−>type = 0 ;
mcreconstructed−>q = mctrackcandidate−>q ;
mcreconstructed−>p = mctrackcandidate−>p ;
mcreconstructed−>E = 0 . 0 ;
mcreconstructed−>theta = mctrackcandidate−>theta ;
mcreconstructed−>phi = mctrackcandidate−>phi ;
mcreconstructed−>x = 0 . 0 ;
mcreconstructed−>y = 0 . 0 ;
mcreconstructed−>z = mctrackcandidate−>z v e r t e x ;
mcreconstructed−>mass = 0 . 0 ;
mcreconstructed−>FindClosestThrown (mcthrowns) ;

data . push back (mcreconstructed) ;
}

r e turn NOERROR;
}

//−−−−−−−−−−−−−−−−−−
// toSt r ing
//−−−−−−−−−−−−−−−−−−
const s t r i n g DFactory DMCReconstructed : : toSt r ing (void)
{

// Ensure our Get method has been c a l l e d so data i s up to date
Get () ;

10

i f (data . s i z e ()<=0) return s t r i n g () ; // don ’ t p r in t anything i f we have no data !

p r in theade r (” row : type : q : p : E: theta : phi : mass : x :
y : z : ”) ;

f o r (uns igned i n t i =0; i< data . s i z e () ; i++){

DMCReconstructed ∗mcreconstructed = data [i] ;

printnewrow () ;

p r i n t c o l (”%d” , i) ;
p r i n t c o l (”%d” , mcreconstructed−>type) ;
p r i n t c o l (”%+d” , (i n t) mcreconstructed−>q) ;
p r i n t c o l (”%3.1 f ” , mcreconstructed−>p) ;
p r i n t c o l (”%3.1 f ” , mcreconstructed−>E) ;
p r i n t c o l (”%1.3 f ” , mcreconstructed−>theta) ;
p r i n t c o l (”%1.3 f ” , mcreconstructed−>phi) ;
p r i n t c o l (”%1.3 f ” , mcreconstructed−>mass) ;
p r i n t c o l (”%2.2 f ” , mcreconstructed−>x) ;
p r i n t c o l (”%2.2 f ” , mcreconstructed−>y) ;
p r i n t c o l (”%2.2 f ” , mcreconstructed−>z) ;

pr introw () ;
}

r e turn t a b l e ;
}

The bottom half of listing 4 is the factory’s toString() method. This is used by
hd dump to print the factory contents to the screen. A few routines are provided to the
factory by the DFactory base base class to help make this easier. These are printheader,
printnewrow, printcol, and printrow. The example illustrates how these are used.

5 Questions

For general discussion or questions which others may benefit from, you are encouraged to
post to the GlueX forums at:

http://tantalus.phys.uregina.ca/gluex/modules.php?name=Forums

Please refer all other questions to David Lawrence at davidl@jlab.org.

11

A Source for hd ana program

Listing 5 shows the main() routine for the hd ana program. It only has three lines. It just
creates a MyProcessor object and a DEventLoop object and then it tells the DEventLoop
object to run over all events, calling the methods of the MyProcessor object when needed.
Notice that the command line arguments are given to the DEventLoop object when it is
created. It will parse them for ,among other things, the file names to read events from.

Listing 5: hd ana.cc

// Author : David Lawrence June 25 , 2004
//
//
// hd ana . cc
//

#inc lude ”MyProcessor . h”
#inc lude ”DEventLoop . h”

//−−−−−−−−−−−
// main
//−−−−−−−−−−−
i n t main (i n t narg , char ∗ argv [])
{

// I n s t a n t i a t e our event pro ce s so r
MyProcessor myproc ;

// I n s t a n t i a t e an event loop ob je c t
DEventLoop event loop (narg , argv) ;

// Run though a l l events , c a l l i n g our event proces sor ’ s methods
event loop .Run(&myproc) ;

r e turn 0 ;
}

12

Listing 6 shows the header file which defines the MyProcessor class for this example.
It defines 5 routines corresponding to the 5 phases of event processing described in section
4.1. Here, the brun() and erun() routines are defined right in the header to do nothing
and just return no error8. In fact, those lines could be left out completely and you’d get
the same effect since the DEventProcessor base class defines them to do the same thing.
They are defined in this example just to remind you of the format in case you actually
need to use them.

Pointers for the ROOT file and a few histograms are defined here as well. These
pointers don’t have to be kept here, that’s just a style choice.

Listing 6: MyProcessor.h

// Author : David Lawrence June 25 , 2004
//
//
// MyProcessor . h
//
/// Example program f o r a Hall−D ana lyze r which uses DANA
///

#inc lude ”DEventProcessor . h”
#inc lude ”DEventLoop . h”

#inc lude <TFile . h>
#inc lude <TH1. h>
#inc lude <TH2. h>

c l a s s MyProcessor : pub l i c DEventProcessor
{

pub l i c :
d e r r o r t i n i t (vo id) ; ///< Cal led once at program s t a r t .
d e r r o r t brun (i n t runnumber){ r e turn NOERROR;} ///< Cal led everytime a new run num
de r r o r t evnt (i n t eventnumber) ; ///< Cal led every event .
d e r r o r t erun (void){ r e turn NOERROR;} ///< Cal led everytime run number ch
d e r r o r t f i n i (vo id) ; ///< Cal led a f t e r l a s t event o f l a s

TFile ∗ROOTfile ;
TH2 ∗ cdc y vs x ;
TH1 ∗ f c a l y v s x , ∗ f c a l h i tE ;

} ;

8NOERROR is defined in derror.h which is included from DEventProcessor.h.

13

Listing 7 is the file that contains the real meat of the program. The init(), evnt(),
and fini() methods are defined. I’ll describe each of them a little here:

derror t MyProcessor::init(void) This routine is where the ROOT file is opened
and the histograms are defined. The first line: eventLoop− >PrintFactories(); just
dumps a list of all of the registered factories to the screen. It isn’t required. The
rest of the lines are just ROOT. See the ROOT documentation for details.

derror t MyProcessor::evnt(int eventnumber) This routine gets called every event
and is where the histograms are filled. In this example, two types of data are re-
quested from the DEventLoop object, eventLoop9. First, the variables cdchits and
fcalhits are declared10. Next, the eventLoop is asked to get these data types from
whatever factory produces them.

In the next section, the histograms are filled inside of two for() loops which loop
over the elements returned by the eventLoop− > Get() calls.

The last line, eventLoop− > PrintRate(), updates the event processing rate on the
screen. It only prints to the screen about once per second and so is safe to call every
event. It is not required though.

derror t MyProcessor::fini(void) This routine just flushes the histograms to the
ROOT file and then closes it.

Listing 7: MyProcessor.cc

// Author : David Lawrence June 25 , 2004
//
//
// MyProcessor . cc
//

#inc lude <iostream>
us ing namespace s td ;

#inc lude ”MyProcessor . h”
#inc lude ”hddm s . h”

#inc lude ”DCDCHit . h”
#inc lude ”DFCALHit . h”

//−−
// i n i t −Open output f i l e here (e . g . a ROOT f i l e)
//−−
d e r r o r t MyProcessor : : i n i t (vo id)
{

// Pr int l i s t o f f a c t o r i e s

9The eventLoop variable is part of the DEventProcessor class and so is inherited by the MyProcessor
class. It is set by DANA before calling any of the MyProcessor methods.

10Note that since we are asking for the DCDCHit and DFCALHit objects, their respective header files are
included at the top of the file.

14

eventLoop−>Pr in tFa c t o r i e s () ;

// open ROOT f i l e
ROOTfile = new TFile (” hd ana . root ” ,”RECREATE” ,” Produced by hd ana ”) ;
cout<<”Opened ROOT f i l e \”hd ana . root\””<<endl ;

// Create histogram
cdc y vs x = new TH2F(” cdc y vs x ” ,”CDC Y vs . X” ,200 , −70.0 , 70 . 0 , 200 , −70.0 , 7 0 . 0) ;
f c a l y v s x = new TH2F(” f c a l y v s x ” ,”FCAL Y vs . X” ,200 , −100.0 , 100 .0 , 200 , −100.0 , 1
f c a l h i tE = new TH1F(” f c a l h i tE ” ,” f c a l s i n g l e de te c to r energy (GeV)” ,100 , 0 . 0 , 6 . 0) ;

r e turn NOERROR;
}

//−−
// evnt −F i l l h i s tograms here
//−−
d e r r o r t MyProcessor : : evnt (i n t eventnumber)
{

vector<const DCDCHit∗> cd ch i t s ;
vector<const DFCALHit∗> f c a l h i t s ;
eventLoop−>Get (cd ch i t s) ;
eventLoop−>Get (f c a l h i t s) ;

f o r (uns igned i n t i =0; i<cd ch i t s . s i z e () ; i++){
const DCDCHit ∗ cdch i t = cdch i t s [i] ;
f l o a t x = cdchi t−>r ad iu s ∗ cos (cdch i t−>phim) ;
f l o a t y = cdchi t−>r ad iu s ∗ s i n (cdch i t−>phim) ;
cdc y vs x−>F i l l (y , x) ;

}

f o r (uns igned i n t i =0; i< f c a l h i t s . s i z e () ; i++){
const DFCALHit ∗ f c a l h i t = f c a l h i t s [i] ;
f c a l y v s x −>F i l l (f c a l h i t −>y , f c a l h i t −>x) ;
f c a lh i tE −>F i l l (f c a l h i t −>E) ;

}

eventLoop−>PrintRate () ;

r e turn NOERROR;
}

//−−
// f i n i −Close output f i l e here
//−−
d e r r o r t MyProcessor : : f i n i (vo id)
{

ROOTfile−>Write () ;
d e l e t e ROOTfile ;
cout<<endl<<”Closed ROOT f i l e ”<<endl ;

r e turn NOERROR;

15

}

16

B Glossary of Terms

attribute: In terms of a C++ object, an attribute is a data member of a class. See also
method.

casting, typecasting: A way of instructing the C/C++ compiler to treat a variable
as though it is of a certain type of data. This is often used to cast pointers so that the
data being pointed to is treated as a certain type.

class: A class is a definition of an object. An object is just the implementation of
a class. Hence, one writes a class, but when the program runs, there may be many
instances(i.e. objects) of that class. A class consists of two types of members: at-
tributes(data) and methods(algorithms).

inheritance: Once a class is defined, another class can be defined which extends or
inherits from it. The class which inherits is called a subclass of the base class it inherited
from. The idea is that the subclass contains everything that the base class does, but can
then be specialized or enhanced. This is a powerful feature that allows for polymorphism.

method: An algorithm belonging to a class. To a FORTRAN or C programmer, this
would simply be a subroutine or a function. Inside the method, the data memebers of the
object are automatically available as local variables.

OO, Object-Oriented: A software design paradigm in which data and algorithms(methods)
are combined into single entities – objects. The objects communicate to each other through
well defined interfaces which allow objects to keep some data private and inaccessible to
other objects. FORTRAN and C are condsidered procedural languages while C++ is
object-oriented.

pointer: An address in RAM memory. In languages such as FORTRAN which do
not use dynamic memory allocation, pointers are not accessible to the programmer. In
C/C++, the program can decide while it is running that it needs a new block of memory
and request it from the system. The system will return a pointer to the new memory
block (or the new object for C++).

polymorphism: This is a property that allows a subclass to be used as though it
were the base class. For instance, if a class shape exists, one can define two subclasses
called circle and square. Both circle and square objects can be treated as objects of type
shape (e.g kept in a list of shape objects.

STL, Standard Template Library: Some standard C++ templates used mainly
for dealing with arrays of objects. Note that templates are an integrated part of C++
and are available even without STL.

subclass: See inheritance.

vector: A randomly accessible array of objects. This is defined as part of the STL.
By contrast, the STL also defines a list which is a linked list of objects.

17

C Other Useful Documents

• GlueX-doc-64 Geometry Specifications for Hall D (HDDS)

• GlueX-doc-65 HDDM — Hall D Data Model

18

