
- 17 -

[image: image1.png]

DANA XE "DANA" :

Hall-D Data Analysis Framework

David Lawrence, Jefferson Lab

Revision 0.1

Table of Contents

3Table of Contents

Table of Figures
5
Introduction
7
Quick Start
7
Obtaining and Building DANA
7
Data Factories and Data Objects
8
Factory Tags
8
Using Tags
8
How DANA Implements Tags
10
Identifiers
11
Event Processors
12
The DApplication Class
12
Standard Command Line Options
12
Using DApplication in Single Event Mode
12
Configuration Parameters
12
Accessing the Detector Geometry
12
Accessing the Calibration Database
12
Interfacing with ROOT
12
Event Sources
12
The HDDM Event Source
13
Saving Output to a File
13
Multi-Threaded Event Processing
13
Shared Objects
16
Index
17

Table of Figures

10Figure 1: Tracking flow chart. The DTrackCandidate factory can get Monte Carlo data from either the DTrackHit factory with the "MC" tag (left) or the DTrackHit Factory with an empty tag "" (right).

Introduction

The Hall-D Analysis framework or DANA XE "DANA" is a software package written in C++ that provides the mechanism by which various pieces of the reconstruction software are brought together to fully reconstruct the data. This is motivated in large part by the number of independent detector subsystems that must be processed in order to reconstruct an event. Each of the subsystems’ reconstruction packages performs a similar set of actions (in no particular order):

· Read raw data in

· Provide processed data out

· Obtain calibration constants from database

· Modify behavior through configuration parameters

The DANA XE "DANA" framework provides a standard way to pass data between packages. Data is passed using STL XE "STL"
 vectors with const pointers to the data objects. By using STL, DANA adheres to a standard in the C++ programming language. By using templates, DANA ensures a level of type safety so fewer errors result and those that do are often caught at compile time. By using const pointers, DANA ensures only the producer of the data can change it (packages that take it as input see it as read-only).

If any of the terminology above scares you because you are unfamiliar with templates, STL XE "STL" vectors, etc… then don’t be. One of the most important design goals for DANA XE "DANA" is to be easy for the user to well, …use. A few simple examples in the Quick Start section should get you going. The bulk of this manual is dedicated to documenting details about how DANA ‘s features are implemented.

If you happen to be looking at DANA XE "DANA" as a framework for processing data not related to Jefferson Lab’s Hall-D, then that should be pretty easy to do too. The one thing that would really need to be changed is the DEventLoop XE "DEventLoop" constructor which calls things like BCAL_init(), CDC_init(), … etc. which install the initial set of factories. If you’re interested in trying this, contact me (davidl@jlab.org), I’d be eager to help.

Quick Start

Obtaining and Building DANA XE "DANA"

Data Factories and Data Objects

Factory XE "Factory" Tags XE "Tags"
It often occurs that more than one factory wants to output data objects of the same type. For example: We have a PID
 factory that outputs a set of particle objects. Suppose there is also a Kaon factory that outputs particles that are likely to be Kaons. The C++ object types produced by both of these factories should be the same (DParticle). But how to distinguish between the two factories? The solution is the factory tag. A Tag XE "Tag" is just a string and it can be any value. All factories have a tag, but most just use the default empty string (“”). In fact the only reason to use a tag is when another factory is already producing data of the same type.

Tags are used to specify a specific factory. They only need to be unique among factories that produce the same type of data objects. There are no built-in checks in DANA XE "DANA" to ensure that this is the case! Therefore, if two factories are added which produce the same data type and have the same tag, then the first one added will always be used and the second will be effectively ignored.

In the two following sections, usage of tags XE "tags" is discussed and how they are implemented in DANA XE "DANA" .

Using Tags

Using tags XE "tags" is easy. First, a factory needs to be “tagged”. This is done by simply adding a const char* Tag XE "Tag" () method to the factory class. The Tag() method is a virtual method in the DFactory_base XE "DFactory_base" class. Without explicitly defining a Tag() method, the method defined in DFactory_base is used which just returns an empty string. Here’s an example of a factory class that has a tag:

class DFactory_DMCTrackCandidate_B:public DFactory<DMCTrackCandidate>{

public:

DFactory_DMCTrackCandidate_B();

~DFactory_DMCTrackCandidate_B(){};

const string toString(void);

const char* Tag XE "Tag" (void){return "B";}

…

};

Notice that the name of the class has the tag appended with an underscore(_B). This is a convention that helps identify the source files that make up a factory. As you can see, it can lead to some very long class names. Adhering to a convention such as this, however, is well worth it when it comes to code maintenance.

It is also worth noting that if you use the mkfactory XE "mkfactory" script, it will take an optional second argument that specifies a tag for the factory. This is the easiest way to make a “tagged” factory.

Once you have a tagged factory, you’ll surely want to use it. To do this, simply add the tag as an argument to the Get() call:

vector<const DMCTrackCandidate*> mctc;

eventLoop->Get(mctc, "B");

Factory XE "Factory" tags XE "tags" can also be useful in development. For example, if you wanted to try a new PID scheme, you could place it in a tagged factory that coexists with the old one. This would allow you to compare output of the two schemes event by event.

Another place tags XE "tags" can be useful is when coupled with a configuration parameter XE "configuration parameter" to modify the source from which a factory receives its data. For example, in the tracking package, there are two ways in which Monte Carlo data can enter. One is by using the truth tags directly, the other is the “normal” way, through the individual detector packages that present the data as though it were real. Using the truth tags directly allows one to test the tracking algorithm on pristine data and to more easily match up the truth information with the tracking results. Using the other subsystems allows one to exercise the system under conditions more closely related to that of real data. Figure 1 shows the tracking flow chart that illustrates this. One can see that when processing Monte Carlo data, the DTrackCandidate XE "DTrackCandidate" factory must decide whether to take its input from the untagged DTrackHit XE "DTrackHit" factory or the one tagged “MC”. This can easily be controlled at run time via a configuration parameter. The following listing demonstrates how:

// constructor

DTrackCandidate XE "DTrackCandidate" ::DTrackCandidate(){

DTRACK_HIT_TAG = “”; // DTRACK_HIT_TAG is member of DTRACK_HIT_TAG

dparms.SetDefaultParameter(“TRK:DTRACK_HIT_TAG”, DTRACK_HIT_TAG);

…

}

// evnt

derror_t DTrackCandidate XE "DTrackCandidate" ::evnt(DEventLoop XE "DEventLoop" *loop, int event_number){

vector<const DTrackHit XE "DTrackHit" *> dtrackhits;

loop->Get(dtrackhits, DTRACK_HIT_TAG);

…

}

The value of the configuration parameter XE "configuration parameter" TRK:DTRACK_HIT_TAG is used as the factory tag when getting the DTrackHit XE "DTrackHit" . The default is to use the “real” data path, but if one were to run any DANA XE "DANA" program with a -PTRK:DTRACK_HIT_TAG=MC command line option, the MC path would be used.
[image: image2.png]| SmearCDC ar e
| Truth positions. Add o
| CDC ard FDC noise

& — T

.
e o] pcocHi] [pFpcHi] [DTOFHi:

DMCTrackHit

DTrackHit:MC DTrackHit

\/

DTrackCandidate

PN

DTrack:LowResolutiof

DTrackEfficiency

Figure 1: Tracking flow chart. The DTrackCandidate XE "DTrackCandidate" factory can get Monte Carlo data from either the DTrackHit XE "DTrackHit" factory with the "MC" tag (left) or the DTrackHit Factory XE "Factory" with an empty tag "" (right).
When using tags XE "tags" in this way, always remember to make the default the behavior a novice would expect.

How DANA XE "DANA" Implements Tags

In the preceding section, the const char* Tag XE "Tag" () method was described. This method is a virtual method of the DFactory_base XE "DFactory_base" class that defaults to returning an empty string. There are two places where the tag field is used to identify the factory. The first is in the GetFromFactory XE "GetFromFactory" () method in DEventLoop XE "DEventLoop" .h. This gets called from the Get() method (also in DEventLoop.h). The tag gets passed into GetFromFactory() as a const char*. The code that actually searches the list of factories for the one with the right type and tag is shown below:

const char* className = T::className();

vector<DFactory_base XE "DFactory_base" *>::iterator iter=factories.begin();

DFactory<T> *factory = NULL;

for(; iter!=factories.end(); iter++){

const char *factory_name = (*iter)->dataClassName();

if(factory_name == className){

if(!strcmp((*iter)->Tag XE "Tag" (), tag)){

factory = (DFactory<T>*)*iter;

break;

}

}

}

The second place the tag can be applied is in a subclass of DEventSource. See the chapter on event sources for more details. In a nutshell though, some event sources can supply objects that were created by another DANA XE "DANA" program. The objects would need to be stored with the tag identifying the factory that created them. The GetFromFactory XE "GetFromFactory" () method will pass the tag into a call to GetFromSource XE "GetFromSource" () which eventually passes it to a call to the DEventSourceXXX object’s GetObjects XE "GetObjects" () method. There it can be used to extract objects of the correct tag (and type) from the source. This is admittedly a little complicated, but this design allows the use of object-seekable XE "object-seekable" sources.

One word of caution: One of the concerns voiced when tags were added to DANA is that it might open the door to “competing standards”. For example, someone does come up with an alternative PID scheme and implements it in a tagged factory. The new scheme has some advantages over the old so those in-the-know make use of it as a standard part of their configuration while the rest of the collaboration uses the default. The point being that if a tagged factory is used to develop an alternative that turns out to be better than the current, then the new scheme needs to have it’s tag removed, and the new needs to either have a tag added or be retired.

Identifiers XE "Identifiers" \b
Every data object in DANA has an identifier(ID) attached to it. This is done through its inheritance of the DObject class which has a member named id of type identifier_t
. The ID is used to uniquely identify an object within the list of those produced by a given factory. The ID is how one data object refers to another. For example, an object representing a cluster in a calorimeter would have a list of IDs corresponding to the individual detector hits used to make the cluster. Similarly, a calibrated data hit may have an ID corresponding to the raw hit from which it came. In general, every data object will have its own ID that others can use to refer to it, and a custom set of IDs to refer to the objects it used to derive it’s own values.

If it were not for the problem of persistence, one could use the object pointer as the ID. However, this relationship must survive across saving the objects to a file and recalling them. Pointers also cannot allow one to refer to a specific object when communicating to a colleague.

The simplest case for using identifiers would be when creating a set of calibrated hits from raw hits. Here, the ID assigned to the calibrated hit could be made the same as that of the raw hit. In this case, no additional members of the calibrated data class are needed to hold the ID of the raw hit since the calibrated hit’s own ID can be used. In general, if an object is derived directly from a single input object AND no other object of its same type can be derived from the same input object, then the IDs can be made to match. In other words, a strict one-to-one correlation.

Much of the time, a given data object will be derived from multiple inputs. In this case, the IDs of the inputs must be included explicitly in additional members of the class. Since the number and variety of inputs used by a factory to derive the data for the objects it produces varies, it is up to the factory/data class designer to include the attributes needed.

Event Processors

The DApplication Class

Standard Command Line Options

Using DApplication in Single Event Mode

Configuration Parameters

Accessing the Detector Geometry

Accessing the Calibration Database

Interfacing with ROOT

Event Sources

The HDDM Event Source

Saving Output to a File

Multi-Threaded Event Processing

Multi-threading is one of the easier concepts to grasp while being one of the harder features to implement. The difficulty in implementation arises simply from needing to get used to the idea that threads must coordinate the use of resources that they share. A thread is a single, independent process of execution. In a way analogous to how a single computer can “simultaneously” run many programs at once, a single program can have many threads that run at once. In fact, deep in the Linux kernel, threads are treated as though they are separate processes. Analysis of large data sets is a natural place to use threads as each event is independent and many events exist in a single file.

Threads have been around for a while, but their popularity has been growing in recent years as multi-processor SMP machines have become more common. In fact, threading will become necessary to take full advantage of the next generation multi-core CPU’s currently being developed. The popular Intel x86 chip line has been at the 2.5-3.0GHz level for a while now and the PowerPC family has yet to break (and likely never will) the 3.0GHz limit. Work is currently being done to develop chips with large numbers of cores (20-100) on the same die. Single-threaded programs will utilize only a fraction of the available computing power on the next generation computers so multi-threading should be considered a requirement.

Using Multiple Threads

The framework itself has multi-threading ability built in. There are two ways a program can be instructed to run with multiple event processing threads:

· Pass a second argument to the Run() method of DApplication in the source code

· Pass a --nthreads=N option on the command line when running the program.

All DANA programs run with a single event processing thread if neither of these is specified. Note that multiple threads can be used even on a single processor computer. You will just not see any performance gains.

The following is an example of a main routine for a DANA application that uses 4 threads by default.

int main(int narg, char *argv[])

{

// Instantiate our event processor

MyProcessor myproc;

// Instantiate an DApplication object

DApplication app(narg, argv);

// Run though all events, calling our event processor's methods

app.Run(&myproc, 4);
// Tell DANA to run with 4 threads

return 0;

}

The command line always takes precedence. If after compiling the above program I decided I wanted to try running it with only 1 thread, I would run it like this:

>hd_ana --nthreads=1 hdgeant.hddm

If a program is acting flaky, it’s a good idea to try running it with a single thread. If it runs OK in single thread mode, that is a good indication that you are not properly locking a resource so multiple threads are colliding when accessing it. Any programs that expect to run in batch mode (like on an analysis farm) should be thoroughly tested with multiple threads before submitting a large job.

The model for multi-threading in data analysis is simple since it lends itself so naturally to it. The fact that events are independent leads to having a single event processed in a single thread. However, both the input and output event sources must be shared by all threads. For example, the typical job will consist of processing all events from a file, filling histograms as you go. You start off with one input file and you want to end up with a single set of histograms in the end. The threads must be coordinated to ensure only one is trying to read an event from the source at a time. Likewise, only one should be modifying the histograms/trees at any given time. The mechanism for locking access to a resource like this is called a mutex (for mutual exclusion) and is part of the threads package.

DANA takes care of locking access to the event source, but it is up to the end user to coordinate access to output such as histograms. It can be tempting to enclose the entire contents of the evnt() method in a mutex lock. While this is definitely “thread-safe”, it also will wipe out any gains from having multiple threads, reducing the program to essentially single threaded operation. To take advantage of threads, all of the factory data should be retrieved outside of the mutex lock. The code example below demonstrates the right way to lock the evnt() method.
#include <TThread.h>

// evnt

derror_t MyProcessor::evnt(DEventLoop *loop, int event_number)

{

// Do NOT place lock here! Most of the CPU time is spent in

// the Get() calls below!

// Grab whatever data we need from framework

vector<const DCDCHit*> cdchits;

vector<const DFDCHit*> fdchits;

loop->Get(cdchits);

loop->Get(fdchits);

// Now lock the ROOT global area

TThread::Lock();
// ROOT lock defined in TThread.h

//

// Fill histograms here using cdchits and fdchits

//

// Make sure we release the ROOT lock or the program will hang

// on the next call to TThread::Lock()

TThread::UnLock();
// ROOT lock defined in TThread.h

}

The above example demonstrates using locks for a program which produces ROOT output. For other packages, something similar must be done when running with multiple threads.

How DANA Implements Threads

If you’re used to sequential programming, then introducing threads will require a slight shift in the way you think about how programs work. The first thing to understand is that an object created in one thread can be used by other threads. More importantly, more than one thread can be “in” the same method of the same object at the same time. This is not all that different from the older idea of being “reeantrant” i.e. that a subroutine can call itself. This is an important concept in the case of event sources. When an event is requested, a DEventSource object must be made (if it doesn’t already exist) and then an event read from it. What happens is that the first thread to try and get an event ends up having to create the DEventSource
 object, which it does through the DApplication object. DApplication keeps track of this so other threads can use the same DEventSource to obtain events. The DApplication, DEventSource, and DEventProcessor
 objects are ones used by all threads. All threads must read in from a single source(DEventSource), output the result to a single output(DEventProcessor) and the information about these is kept in a centrally accessible area (DApplication).

Some objects are kept exclusive to the thread that creates them

Figure 3: Conceptual view of how DANA objects are related when running multiple threads. The DEventLoop and various DFactory objects are all specific to a thread while the DApplication, DEventSourceCODA, and DEventProcessor objects are used by all threads.

Shared Objects

Index

C
configuration parameter, 7, 8

D
DANA, 1, 5, 6, 8, 9

DEventLoop, 5, 7, 8

DFactory_base, 6, 8, 9

DTrackCandidate, 7, 8

DTrackHit, 7, 8

F
Factory, 6, 7, 8

G
GetFromFactory, 8, 9

GetFromSource, 9

GetObjects, 9

I
Identifiers, 2, 9
M
mkfactory, 7

O
object-seekable, 9

S
STL, 5

T
Tag, 6, 8, 9

Tags, 6, 7, 8

[image: image3.png]

[image: image4.png]

[image: image5.png]

� Standard Template Library

� Particle IDentification

� At this time the identifier_t is just a typedef of type int. The special type is used to allow the possibility of strict type checking or the use of a complex structure should they be needed in the future.

� DEventSource is the base class for all event sources. In reality, this will always be a subclass such as DEventSourceHDDM. The base class name DEventSource is used for simplicity here.

� Similarly to the previous footnote, this will be a subclass of DEventProcessor

D. Lawrence
Page 17
8/19/05

