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Abstract

Progress of track finding in multi-track Monte Carlo data are presented. An alternative
track-seed based approach is used to identify track candidates in 2D which are then used to
find tracks in 3D. Efficiencies for 4 muon track events (µ+µ+µ−µ−) are given as functions
of kinematic variables, p, φ, θ and the number of hits per track. Results are given for clean
MC data as well as for “smeared” data with random noise hits. Results of a simulation
targeting a suggestion by the 2004 Detector Review regarding FDC package placement
are also given. Finally, the organization of the tracking code and its implementation in
the DANA framework are given. This note documents a work in progress.
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1 Introduction

This note documents the current progress of the track finding (sometimes called pattern
recognition) software for GlueX. It almost supercedes the earlier document GlueX-doc-
441[1], but there may still be some useful information there.

The GlueX detector is designed such that it can simultaneously measure several
charged particle tracks as they move through the magnetic field of the solenoid. The
primary detector systems used for this are the central drift chambers(CDC) and the for-
ward drift chambers(FDC). Each chamber will supply data in the form of “hits” which
must be sorted into lists of track candidates before they can be passed through the final
fitting/filtering stage to produce tracks.

Most of the software described in [1] was re-written replacing several of the algorithms.
Among these, the Hough Transform[7] method was replaced with a seed-based method
described in section 2. Also new is the way track finding efficiency is measured. The earlier
parameter matching method of measuring efficiency was replaced with a hit matching
method described in section 4.

All of the work reported in this document used HDGeant generated “truth tags” as
the initial source of hit information. The tracking code works only with 3D hit positions
from CDC and FDC hits. It does not use any GlueX geometry specific information with
the execption of the range in z covered by the GlueX target. In this way, the code can be
used as-is to test how geometry changes affect the track finding efficiency. An example of
this is given in section 6.

2 Seed-based Track Finding

The concept used in seed-based tracking is simple: Start at the outside edge of the chamber
where the hit density is lowest and look for hits that are close together. One starts with a
single hit and looks for its nearest neighbor and then its nearest neighbor and so on until
it finds that either the nearest (unused) neighbor is greater than a certain distance 1 away
or it has obtained enough points 2 for an initial fit. This initial set of points is called the
seed. Seeds are only found in the X/Y plane (z information in unused at this point).

2.1 Seed Finding/Fitting

To help with diagnostics and development of the tracking code, the patfind program was
updated. Figure 1 shows the updated patfind with one of the 4µ track events used for the
studies presented in this report. Points are drawn with varying color and size to indicate
at what phase of the track finding the point was used. For example, in figure 1, the green
hits made up the seed for the selected track. Similarly, the slightly smaller megenta points
are “on-circle”, the blue points are “on-line” (i.e. on the line in the φ − z plane) and the
small red dots are those hits included as part of the final track candidate.

The thick, cyan-colored line in figure 1 represents the circle obtained from a fit to just
the seed hits (green). The darker, thinner line is the result of the 3-D fit for the track.
The yellow lines represent similar information for the un-selected tracks.

1DANA configuration parameter TRK:MAX SEED DIST = 5.0cm
2DANA configuration parameter TRK:MAX SEED HITS = 10
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Figure 1: Updated patfind program that used track-seeds.

Fits are done in three stages, first, a linear regression style fit is done to the hits in
the X/Y plane to find the parameters of the circle that best descibes the hits AND passes
through the beamline. Second, the center of the circle is used to calculate the φ angle of
the hit about the axis of the helix. This will have a linear relationship with z as shown
in figure 2. The φ, z points are used to determine the angle of the line in the φ/z plane.
Third, using the φ− z angle, the same φ, z points are used to determine the z coordinate
of the vertex.

2.2 Finding the φ − z angle

The range covered by the target in z 3 is used to determine the range of angles each
hit is consistent with. Figure 2 (right) shows a histogram whose peak gives the φ − z
angle for the hits shown in the plot on the left. The histogram is filled in the following
way: For each hit 4 , the angles are calculated for a vertex position at the upstream and
downstream ends of the target, on the beamline. These two angles define a range in the

3DANA configuration parameters TR:TARGET Z MIN and TRK:TARGET Z MAX (30cm and 80cm)
4These are “on-cicle” hits. i.e. hits which were close to the circle found using only X/Y information
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Figure 2: Left:φ vs. z for hits that were “on circle”. Right:Histogram of
angle in φ−z plane each point makes with the found z-vertex position.

φ − z angle histogram. Each bin in this range is incremented by one. In this way, hits
close to the target are effectively weighted less because they fill a broader range of bins in
the histogram. The hits that are further away have a longer lever-arm and fill a smaller
range of bins, effictively giving them more weight.

Since this often leads to a plateau as opposed to a sharp peak, the center of the plateau
is used for the actual value of the φ−z angle. The range covered by the plateau, however,
is used to determine the z-vertex as described in section 2.3.

Often, hits from different tracks are on-circle in the X/Y plane. These however, do
not tend to fall on the line in the φ−z plane. Figure 3 shows one such event. It is because
of these extra hits, that we cannot simply do a linear regression on all φ, z points as the
extra hits would significantly bias the results. As indicated in figure 3, the extra hits will
tend to form a second peak in the φ−z angle histogram. The taller peak is always chosen.

2.3 Finding the Z vertex

The z-vertex is found in a very similar way as the φ − z angle. Using the range of φ − z
angles from the previous step, a range in the z-vertex position is calculated for each hit.
The bins corresponding to this range are then incremented in another histogram resulting
in one like that of figure 4. Here, again, a natural weighting occurs that gives the correct
bias. The points closest to the target will increment a narrower range in the histogram
while those furthest away will increment a wider range. This, like in the φ− z case, tends
to lead to a plateau like that shown in figure 4. Again, we take the center of the plateau
as the value of the z-vertex position.
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Figure 3:
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Figure 4: Histogram of z-vertex made by projecting each point back to
beamline over range of φ− z angles determined by peak as in figure 2.
The center of the plateau is used as the vertex. For this simulation, the
thrown vertex was at z = 65cm

6



3 Data Smearing and Noise Hits

To better simulate real data, the values obtained from the “truth tags” for the CDC and
FDC hits were smeared and random noise hits were added. The smearing and noise hits
were done individually for the CDC and FDC systems. The following sections describe
the details.

On average, there were about 126 noise hits in the CDC and FDC combined per event.
The average track has around 30 hits per event. For the 4 track event used, that meant
an average of about 120 real hits per event.

Figure 5 shows an event in its pure, smeared, and smeared with noise forms.

3.1 CDC smearing and noise

The X and Y hit positions in the CDC are smeared by randomly placing them in a circle
of diameter 1.6cm centered on the actual hit position. The 1.6cm is the diameter of a
straw tube.

The Z hit position in the CDC is smeared by sampling a gaussian with σ = 7.5cm
centered at the actual hit position. The value of 7.5cm is obtained by estimating the error
as σz = 0.8/sin(6o). The 6o i the pitch of the stereo layers with respect to the axial layers.
The 0.8cm is the radius of a straw tube. The value of σz was rounded down to 7.5cm.

The noise hits in the CDC were generated assuming an average noise hit occupancy of
3%. With 3240 wires in the CDC, this meant an average of 97 noise hits per event. The
exact number of noise hits generated for an event was sampled from a gaussian distribution
with σ =

√

97. The noise hits were evenly distributed throughout the fiducial volume of
the CDC.

3.2 FDC smearing and noise

The X and Y hit positions in the FDC are smeared by randomly placing them in a square
of side 0.5cm centered on the actual hit position. The 0.5cm is the wire spacing in the
FDC. This would correspond to using hit-based information only from the chambers. It
was done this way since it would allow track finding to be done at a hit-based level in the
FDC, eliminating the need for at least one set of calibration constants.

No smearing was done on the FDC z coordinate since it that should be well known.
The noise hits in the FDC were generated assuming an average noise hit occupancy

of 1%. With 2856 anode wires in the FDC, this meant an average of about 29 noise hits
per event. The exact number of noise hits generated for an event was sampled from a
gaussian distribution with σ =

√

29. The noise hits were evenly distributed throughout
the fiducial volume of the FDC.

3.3 Noise Hit Rejection

The introduction of random noise hits into the data worked to confuse the track finding
algorithm, leading to lots of ghost tracks which, in turn, tended to mask real tracks. To
counter this, a filter was used to remove hits believed to be noise before track finding
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A

B

C

Figure 5: hdview of the same simulated nµ+µ+µ−µ− event with A.)
No smearing B.) FDC and CDC smearing (see text) and C.) FDC and
CDC smearing as well as random noise hits.
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began. The filter worked by simply cutting out hits whose nearest neighbor in the X/Y
plane was less than some threshold 5.

The threshold is used to discriminate between hits that are from the real tracks, and
hits from noise. Real tracks tend to have hits closely clustered in the X/Y plane where
noise hits do not. The top plot in figure 6 shows the distribution of the nearest neighbor
distance for hits from the same track(blue) and hits from different tracks or noise hits(red).
The black line indicates the threshold value used of 2.0cm.

The value for this threshold was optimized by measuring the track finding efficiency
at several values of the threshold. The bottom plot in figure 6 shows the results of these
simulations for both pure data and data smeared with noise hits. The grey line indicates
the threshold value of 2.0cm in this plot as well.

4 Track Finding Efficiency

The track finding efficiency was measured as a function of momentum, θ angle, φ angle,
and number of hits per track for each of the three data conditions shown in figure 5. The
efficiencies are shown in figures 7-10. Overall, the efficiency is about 92% for the worst
case data while it is at about 98.5% for the ideal case.

4.1 How Tracking Efficiency Is Measured

There are two main approaches to determining the tracking efficiency: Hit Matching and
Parameter Matching [6]. In the previous GlueX note[1], an implementation of the param-
eter matching was used. For parameter matching, one compares the final fit parameters
with those of the thrown particles. This is straight forward, but may not yield accurate
results, particularly in the present case when we have not performed the final Kalman fit.

For the present study, a hit matching approach was used. In this approach, truth
information about each hit is used to determine if a track was found. Specifically, if 70%
or more of the hits in a found track came from the same thrown track, then the track is
considered to be found. This was the criteria used to produce the plots in figures 7-10.

The efficiency plots of figures 7-10 were all produced by the DEventProcessor TrackHists
object in the TRACKING package. This is accessible to any DANA program wishing to
create these histograms. They will be placed in a directory called “TRACKING” in
the currently open ROOT file. Also, one can simply run the mctrk ana program on
the HDGeant produced HDDM file. This is available so that anyone can easily check
how geometry or early phase analysis changes affect the efficiency. See section 6 for one
example.

5 Event Processing Rates

The speed at which the reconstruction code operates will be important to both the level-3
trigger and online monitoring. It is therefore worthwhile to keep track of how fast it
operates to ensure it is not prohibitively slow. The event processing rate was measured

5DANA configuration parameter TRK:XY NOISE CUT (2.0 cm)
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Figure 9: Track finding efficiency vs. µ θ angle(rad) at vertex for the
three levels of data quality.
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using a quad 2.4GHz Opteron machine with 3.5GB of RAM. For the tests, only track
finding was done. No other reconstruction code was active.

The DANA analysis framework has the ability to process events using multiple threads.
Running a single thread on a SMP machine will utilize only a single CPU while the others
essentially sit idle. With 4 threads running, all 4 CPUs are used. The table below shows
the event processing rate obtained for 4µ events for 1,2,3,4,5, and 20 threads. The row
labled pure are rates obtained when processing the clean MC data. The row labled noisy
are rates obtained when processing MC data whose values were smeared and noise hits
were added.

1 thread 2 threads 3 threads 4 threads 5 threads 20 threads

pure 357Hz 680Hz 994Hz 1348Hz 1155Hz 1087Hz
noisy 177Hz 346Hz 512Hz 663Hz 632Hz 584Hz

One encouraging result indicated by the above table is that the rate roughly scales
with the number threads. At least until one has more threads than CPUs. Another
interesting result is that the rates actually decrease when one uses more threads than
there are CPUS. There are a few possible causes for this. Regardless of the root cause,
we will need to optimize the number of threads based on the exact hardware utilized in
the online systems.

According to the design report[9], a level-3 farm would need to process events at
around 200kHz. The means at least 570 dual CPU boxes would be needed just for track
finding. More optimization will clearly be needed.

6 FDC Package Positions

Among the suggestions made by the GlueX detector review committee was one concerning
spacing of the FDC packages[5]. The suggestion was that if the first two packages were
placed closer to the target, and the last two evenly spaced in the remaining space, it might
improve the track finding efficiency for low momentum tracks. With the track finding and
efficiency measurement code in hand, this suggestion was explored.

Using the hdds package[8] the position of the second FDC package was moved upstream
by 39.5cm and the third by 21.5cm. Figure 11 shows an event drawn by hdview with the
modified spacing.

Two simulations of 4µ events were done with 50k events each (200k tracks total).
One with the nominal symmetric spacing and the other with the asymmetric spacing
suggested by the review committee. The track finding efficiency vs. momentum and
theta are shown in figure 12. As shown in the plots, the geometry change does not seem
to affect the track finding efficiencies, even for the low momentum tracks where one might
expect an improvement. The reason for this is most likely because the CDC adequately
detects the tight-looping, low momentum tracks before they even get to the first FDC
package.
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Figure 11: An event from the simulation with un-even spacing between
FDC packages.

7 Tracking Code Organization

The tracking code was reorganized in accordance with a more formal plan for tracking in
the final reconstruction code. Figure 13 shows a flow chart indicating the dependancies
of the factories that make up the tracking package.

As indicated in the flowchart, Monte Carlo data can enter the track finding factory
DTrackCandidate through two different paths. The one on the left derives all CDC and
FDC hits from the truth tags and is what was used for the current study. When the first
stage reconstruction factories are implemented for the CDC and FDC, the DTrackCan-
didate factory can get its data from there. In fact, a DANA configuration parameter[2]
named “TRK:TRACKHIT SOURCE” is used to determine which factory DTrackCandi-
date uses for its input. The parameter specifies the factory tag to use. At the time of
this writing, the default is to use the DTrackHit factory with the “MC” tag. This will be
changed to use the untagged factory when the DCDCHit and DFDCHit factories become
available.

8 Still To Do

The track finding code currently does not support detached vertices. More studies are
also needed to look at the tracking efficiency of different particle types (e.g. πs). Sec-
ondary tracks, a realistic magnetic field, and systematic geometry shifts all still need to
be explored in more detail. A final track fit (likely with a Kalman filter) needs to be
implemented as well.
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