Glue-X FDC/CDC ADC Module

Preliminary Specifications

• Resolution: 12 bits

 Sample rate: 65 MS/s (today) – higher sample rate no doubt will be practical in years to come – to be cost effective this board will require high density ADC's, such as MAX1438 [8 ch / 17×17 mm² footprint, 11.6 ENOB @ ≤30 MHz, 114 mW/ch]

• Analog pulse shaping: TBD, anything we can do with a few op-amps is fine... Will be coordinated with preamp ASIC & board design.

• Channel count: 96 (1920 ch/crate, FDC \rightarrow 8 crates)

• Inputs: 16 channels per 40 conductor cable (jacketed shielded twist-nflat, standard connectors); 1 V (differential) full scale input, 110 Ohm termination. Gain and termination are set by resistor values (no jumpers). Split termination sets line voltage (preamp board will have current-mode driver).

• Preamp board power and control (if any) on same cables (8 conductors available); preamp power up to 100 mW/ch ok, fused and switchable under software control.

• Record length: Programmable up to 1024 (probably typically use ~100 samples??, cf. Simon's work on FDC proto).

• Readout buffer: At least 2048 samples per channel (~20 events buffered on board @ 100 samples/event) – is this enough?

• Triggering: External trigger and event descriptor received from J2 pins (only). Possible internal trigger (digital discriminator) intended for test applications.

• Mechanical/Power: 6U VME, forced-air cooled, DC power mainly from VME64x supply voltages (+5, +3.3, ±12, 48 V, usage TBD); expect about 20 W per board (400 W per crate) + preamp power TBD

• Readout: VME64, 32 and/or 64 bit block transfers supported (~64 MB/s); 2eSST desired??; interrupts on buffer full / almost full

• First boards planned available around 7/2006

48 more channels on mezzanine

Drift Chamber FADC Board Procured Parts & Contract Assembly Costs (excludes engineering labor and in-house (IUCF, IU, and/or Jlab) testing and repair

G. Visser, P. Smith, 7/11/2005

G.V. updated 9/21/2005 adding FY06 R&D budget columns and new ADC options G.V. slightly revised 11/8/2005

Based on installed 14592 channels (4 pkg x 6 layer x (128 anodes + 480 cathodes) [cable granularity 16]), + 10% spares, * 1.02 yield factor (unrecoverably damaged boards) $\rightarrow \rightarrow \rightarrow \text{IT IS HERE COSTED AT} \rightarrow \rightarrow \rightarrow \text{I6416 channels}$

Specifications: 12 bit, 65 MSamples/s, >200 MHz bandwidth, >8 us memory depth, deadtimeless readout

NOTE: 10 bit may be sufficient, costs would be reduced, see alternate part below.

Costed assuming 64 channels per 6U VME module w/mezzanine - actual production is hoped to be 96 channels, if feasible (lower cost especially of crates)

Item	Cost ea	Qty/Ch	Cost/Ch	Total Line Cost Basis
ADC (ADS5273, 12-bit)	12	.12	5 15.125	\$248,292 MFG budgetary pricing
Cable receiver & ADC driver		3	1 3	\$49,248 engineering judgement; based on STAR EEMC MAPMT design
FPGA (XC3S1000-4FG456C)	6	0.2	5 15.75	\$258,552 distributor web pricing
FPGA for VME logic (TBD - est. as XC3S1000-4FG456C)	6	0.01562	5 0.984375	\$16,160 distributor web pricing
VME bus interface chip (SN74VMEH22501GQLR)	1.8	0.14062	5 0.262969	\$4,317 distributor web pricing
Analog power regulators	6	0.01562	5 0.9375	\$15,390 estimated based on STAR EEMC MAPMT design
Digital power regulators	4	0 0.01562	5 0.625	\$10,260 estimated based on STAR EEMC MAPMT design
clock & clock distribution	4	0 0.01562	5 0.625	\$10,260 engineering judgment
input connectors (40C header RA w/latch)	1.5	64 0.062	5 0.09625	\$1,580 distributor web pricing
VME64 connectors (Harting 02-01-160-1101)	16.9	0.01562	5 0.264531	\$4,343 distributor web pricing
misc. components (mostly R & C)	0.00)7 3	6 0.252	\$4,137 estimated based on STAR EEMC MAPMT design
board (main)	18	0.0312	5 4.6875	\$76,950 engineering judgement, toy webquote
board (mezzanine)	1(0.0312	5 3.125	\$51,300 engineering judgement
front panel	8	0.01562	5 1.25	\$20,520 taken from PMT FADC estimates
contract assembly (main & mezzanine)	30	0.01562	5 4.6875	\$76,950 engineering judgment experience from STAR, discussions w/ Chris Cuevas
		TOTAL	51.67263	\$848,258

ALTERNATES FOR ITEM 1:				
ADC (ADS5277, 10-bit)	32	0.125	4	\$65,664 MFG budgetary pricing
ADC (MAX1438, 12-bit 65MSPS)	54.85	0.125	6.85625	\$112,552
ADC (MAXxxx, 10-bit 65MSPS)		0.125		

R&D and NRE Items

TI eval board Maxim eval board (very nice, with FPGA!) miscellaneous components for prototyping miscellaneous components to interface w/ detector prototypes pcb fab NRE 2x assembly NRE 2x

General information:

The above is based on using TI's 8-channel ADC chips with serial LVDS output.

At present this is the highest density packaging, with package size of 14 mm square - however it will likely be improved upon in future by other manufacturers.

I am conservatively estimating one FPGA for every 4 channels, although if the processing turns out to be relatively simple it may well be possible to have one FPGA for every 8 channels.

Schedule:

We produced 9,600 channels of "FADC" for the STAR EEMC MAPMT readout in less than 2 years, despite slippage in the availability of funds.

Although this here is 1.5 x as many channels, in STAR it was 4 channels per FEE board, and there were 4 additional supporting boards required (1 @ 16 channels ea, 3 @ 192 channels each), therefore the complexity of the assembly and test effort in STAR exceeded what will be necessary here, and I am 100% confident in completing the build in less than 2 years, including all testing. Design can also certainly be accomplished within a single year, once the specifications are frozen.

For R&D budget, 5 boards @ 64 ch							
Cost ea	Qty/Ch	Cost/Ch	Total Line Cost				
160	0.125	20	\$6,400				
6	1	6	\$1,920				
75	0.25	18.75	\$6,000				
75	0.015625	1.171875	\$375				
2	0.140625	0.28125	\$90				
50	0.015625	0.78125	\$250				
30	0.015625	0.46875	\$150				
50	0.015625	0.78125	\$250				
2	0.0625	0.125	\$40				
15	0.015625	0.234375	\$75				
0.05	36	1.8	\$576				
500	0.03125	15.625	\$5,000				
300	0.03125	9.375	\$3,000				
300	0.015625	4.6875	\$1,500				
600	0.015625	9.375	\$3,000				
	total/ab	¢00					
	total/cn	40 9					
93.25	0.125	11.65625					
250			\$250				
800			\$800				
1000			\$1,000				
2000			\$2,000				
2000			\$2,000				
2000			\$2,000				
		TOTAL	\$36,676				