What and idiot like myself would like to do

Write fortran for A(input=4-vectors,param; output=cmplx number)

Fit in several different ways, moments, data, projections, Dalitz plots

Change amplitudes frequently

Compare an arbitrary projection of the data with theory

Do it fast and use only a combination of fortran + point and click

Amplitudes are complicated and may take a long time to compute

What Would Geoffrey Say

Computation of "normalization integrals" is a computer science problem which must have a solution

Convergence after O(10) iterations <-> physics is correct

Amplitude parametrization : beyond the isobar model

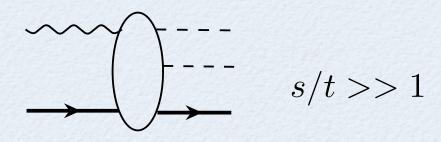
1. t-channel expansion

2. deficiencies of the isobar model

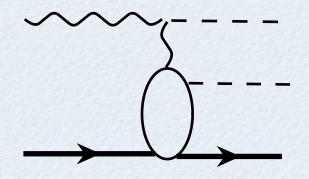
3. examples

4. analysis plan

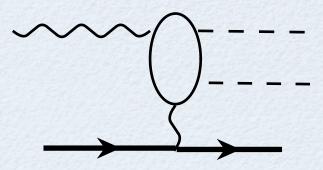
Amplitude factorization $\gamma p \rightarrow \pi^+ \pi^- p$



= sum of t-channel processes

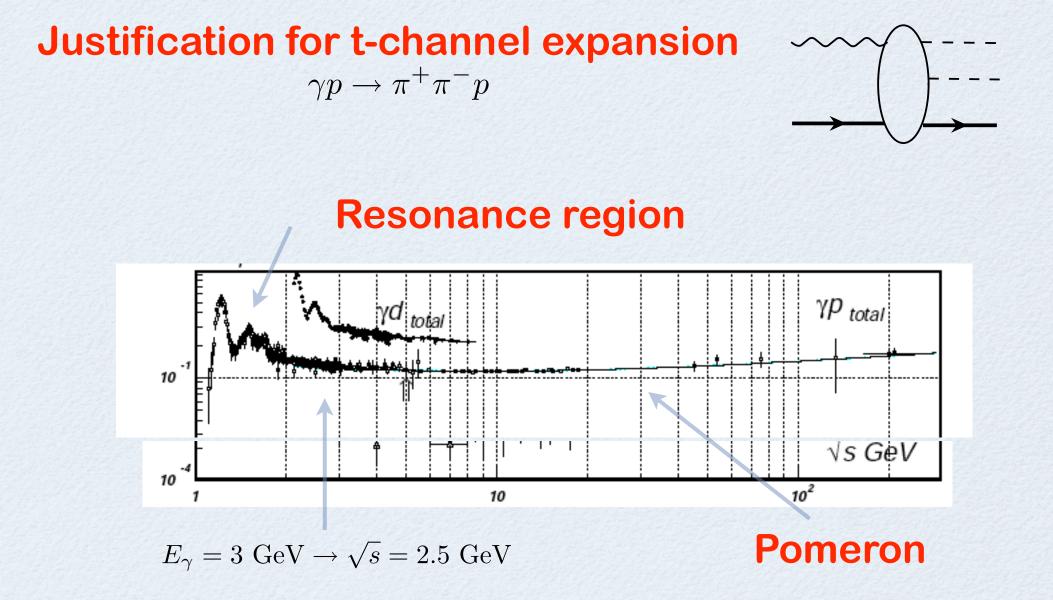


exchange + reggions (Delta production)

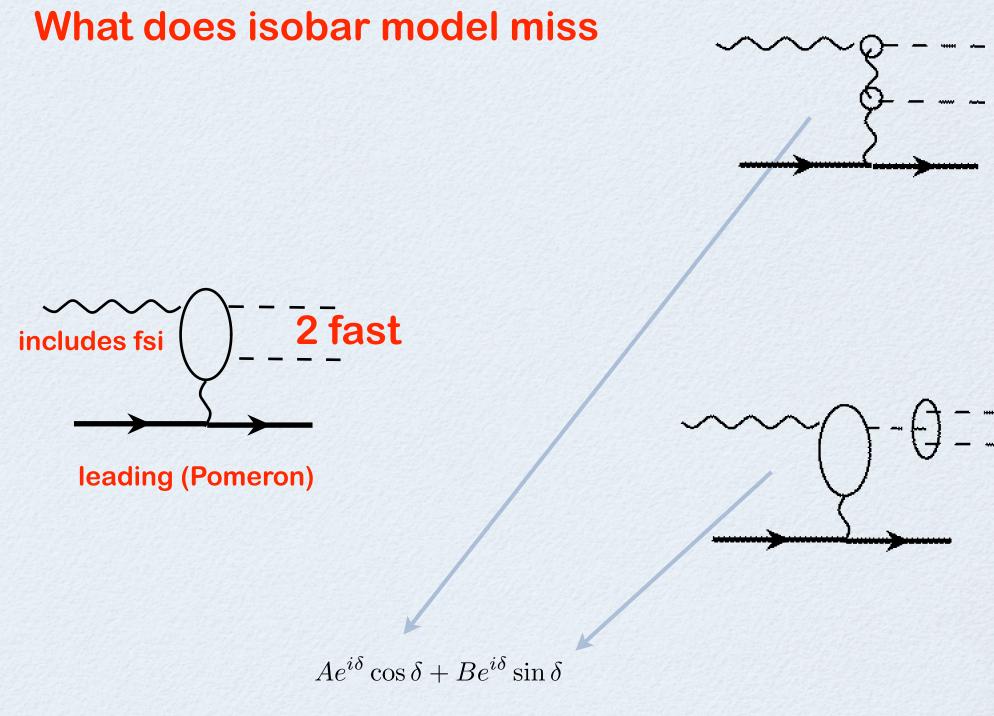


isobar model = particular approximation to this type of amplitudes

What characterizes t-channel amplitudes is that the s-dependence factorizes (unlike in baryon resonance production)



Dual description, in terms of (t-channel) forces is appropriate outside the resonance region



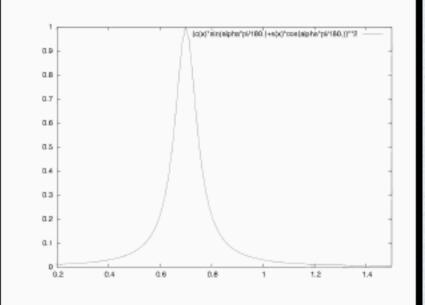
in a single partial wave

Inelastic processes can produce resonances directly !

 π

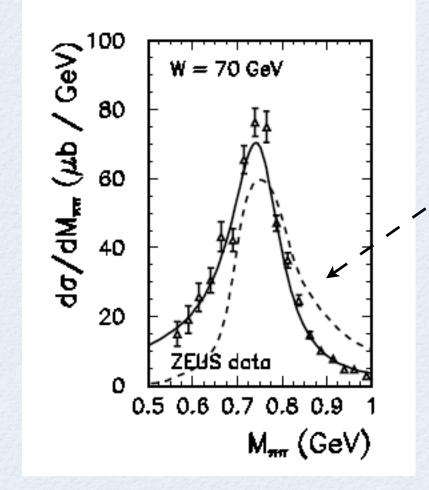
Diffuse source suppresses resonance production (Watson theorem)

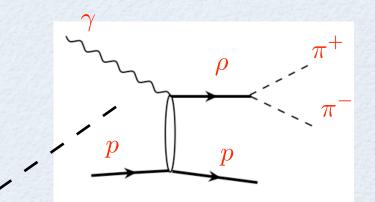
 $\rightarrow \pi^+$ π $e^{i\delta(M)}\sin\delta(M)$



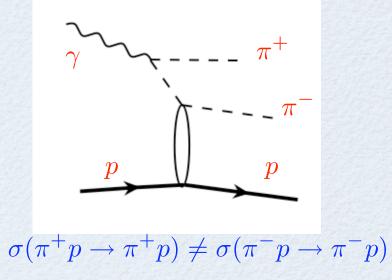
 π^+

 $e^{i\delta(M)}\cos\delta(M)$

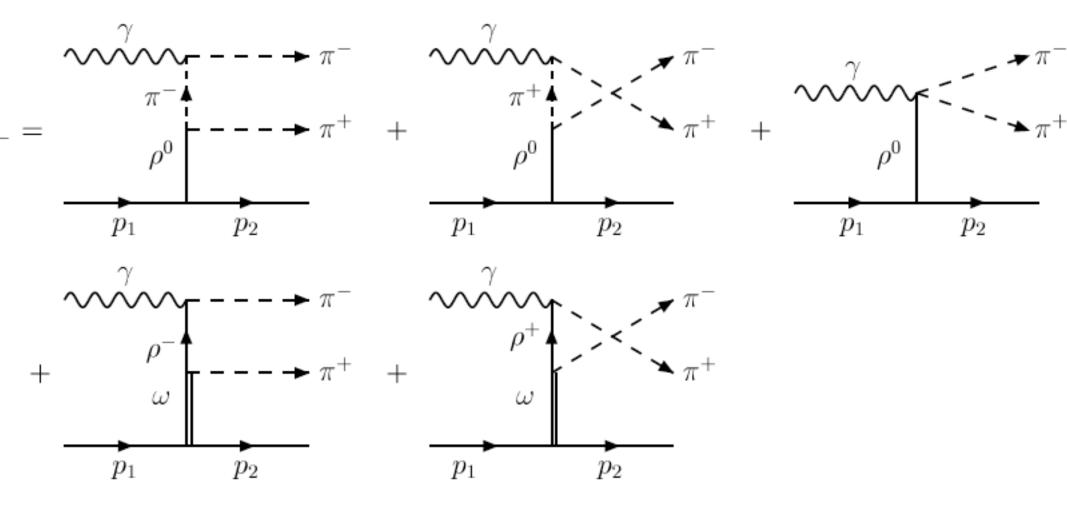




Inelastic diffraction, (W > 2 GeV)



Born diagrams of the $\pi^+\pi^-$ photoproduction in the S-wave

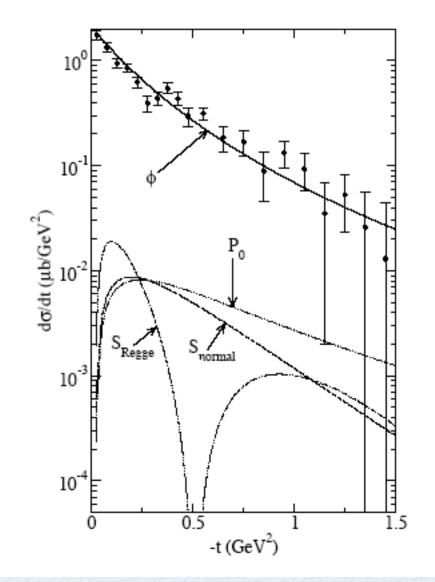


...when applied to KK photo-production

1. DESY (1978) $E_{\gamma} = 4.6 - 6.7 \text{ GeV}$ $|t| < 0.2 \text{ GeV}^2$ total photoproduction S-wave cross section $\sigma_S = (2.7 \pm 1.5)nb$

2. Daresbury (1982) $E_{\gamma} = 2.8 - 4.8 \text{ GeV}$ $|t| < 1.5 \text{ GeV}^2$ total photoproduction S-wave cross section $\sigma_S = (96 \pm 20)nb$ for the resonant component

Differential cross section at 4 GeV



Partial Wave decomposition cont.

$$Ampl = \sum_{LM} T_M^L(E_{\gamma}, t, M; \lambda, s_1, s_2) Y_{LM}(\Omega)$$

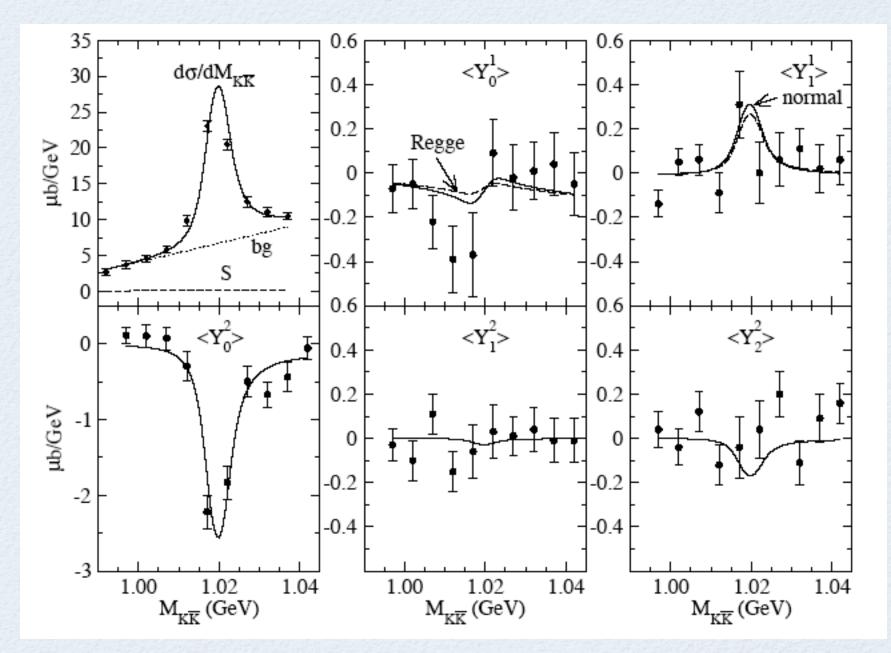
e.g. with S and P waves only

$$I(\Omega) = \sum_{\lambda = \pm, s_1, s_2 = \pm \frac{1}{2}} |\operatorname{Ampl}(\lambda, s_1, s_2)|^2$$

$$\begin{split} \langle Y_{0}^{0} \rangle &= \frac{\mathcal{N}}{\sqrt{4\pi}} \left(|S|^{2} + |P_{+}^{2}| + |P_{-}^{2}| + |P_{0}^{2}| \right), \\ \langle Y_{0}^{1} \rangle &= \frac{\mathcal{N}}{\sqrt{4\pi}} \left(SP_{0}^{*} + S^{*}P_{0} \right), \quad \langle Y_{1}^{1} \rangle = \frac{\mathcal{N}}{\sqrt{4\pi}} \left(P_{+}S^{*} - SP_{-}^{*} \right), \\ \langle Y_{0}^{2} \rangle &= \frac{\mathcal{N}}{\sqrt{4\pi}} \sqrt{\frac{1}{5}} \left(2P_{0}P_{0}^{*} - P_{+}P_{+}^{*} - P_{-}P_{-}^{*} \right), \\ \langle Y_{1}^{2} \rangle &= \frac{\mathcal{N}}{\sqrt{4\pi}} \sqrt{\frac{3}{5}} \left(P_{+}P_{0}^{*} - P_{0}P_{-}^{*} \right), \quad \langle Y_{2}^{2} \rangle = \frac{\mathcal{N}}{\sqrt{4\pi}} \sqrt{\frac{6}{5}} \left(-P_{+}P_{-}^{*} \right). \end{split}$$

Notation $SP_0^* = \sum_{\lambda, s_1, s_2} T_0^0(\lambda, s_1, s_2) T_0^{1*}(\lambda, s_1, s_2)$

Fit to Daresbury, 4GeV data

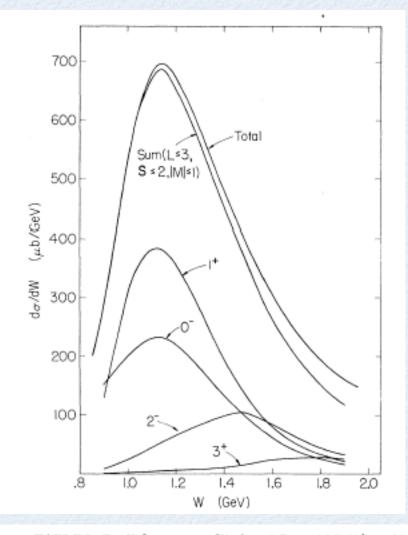


Integrated cross sections in nb

photon energy	4 6	leV	$5.65 {\rm GeV}$		
S-wave propagator	normal	Regge	normal	Regge	
sum of all P -waves	218.4	± 39.5	120.5 ± 9.4		
P_0 -wave	$6.4^{+5.5}_{-4.8}$	$4.7^{+5.7}_{-4.5}$	$13.8^{+5.3}_{-4.7}$	$14.0^{+5.3}_{-4.8}$	
\rightarrow S-wave	$4.9^{+5.8}_{-3.6}$	$4.3^{+6.6}_{-3.6}$	$7.0^{+6.8}_{-4.4}$	$6.8_{-4.3}^{+6.6}$	
background	$299.4^{+10.0}_{-10.4}$	$300.0^{+10.0}_{-10.7}$	$4.5_{-6.1}^{+4.3}$	$4.7^{+4.2}_{-5.8}$	
$ t _{max}$	1.5 (GeV^2	$0.2 \ { m GeV^2}$		
$M_{K\overline{K}}$ range	(0.997, 1.0)	042) GeV	(1.01, 1.03) GeV		

Important result: 4 nb $< \sigma_S < 7$ nb for $4 < E_{\gamma} < 7$ GeV.

Recall: Daresbury estimation was $\sigma_S = 96$ nb.

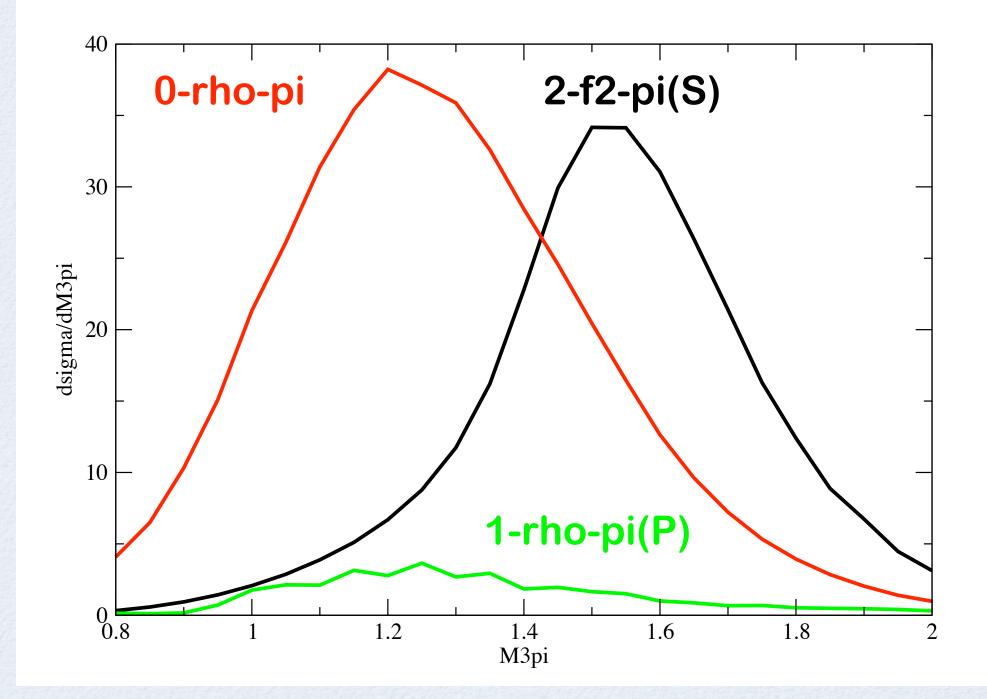


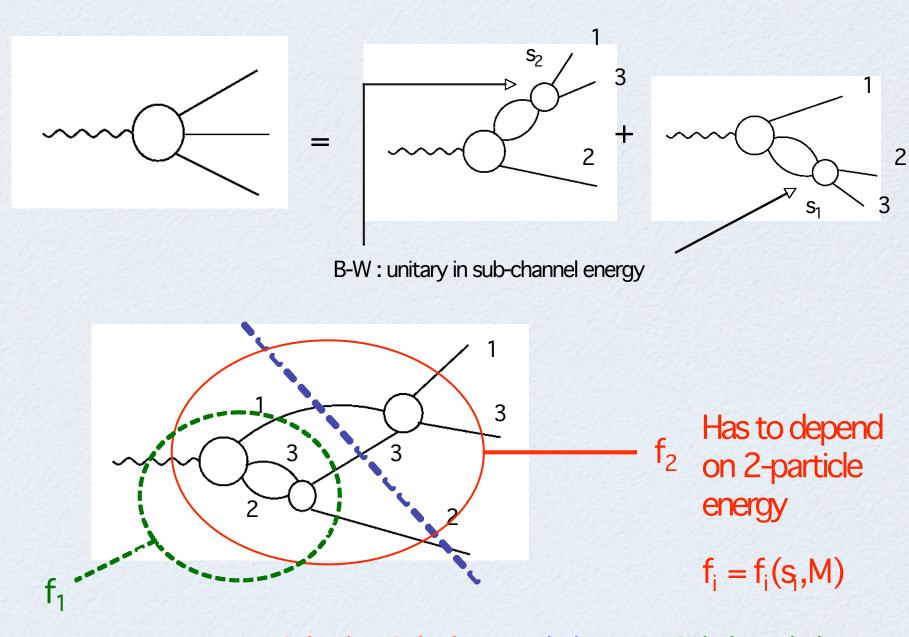
3pi Deck

FIG. 7. Cross sections for the dominant J^P states, and the sum of cross section contributions for low L, S, and J are compared with the total cross section obtained by Monte Carlo summation. $P_{lab} = 16 \text{ GeV}/c$. Only amplitudes with M < 2 and only the nucleon helicity combination $F_{++} + F_{--}$ are used in calculating the contributions of definite J.

Ascoli & Wyld

Quantum numbers of partial waves	$\frac{1}{2}(F_{++}+F_{})$		$\frac{1}{2}(F_{+-}-F_{-+})$		$\frac{1}{2i}(F_{++}-F_{})$		$\frac{1}{2i}(F_{+}+F_{-+})$	
JPMLS	Magnitude ^a	Phase	Magnitude	Phase	Magnitude	Phase	Magnitude	Phase
0 - 0 0 0	20,12	129°	1.36	66°	0		0	
1 + 0 1 0	4.70	46^{*}	0.32	74°	0		.0	
1+110	2.46	129°	0.11	6°	0.09	-163°	0.01	17°
2 - 0 2 0	0.82	76°	0.45	101°	0		0	
2 - 1 2 0	0.99	123°	0.19	- 69°	0.05	-174°	0.01	6°
1 + 0 0 1	34.07	129°	2,30	67°	0		0	
1 + 1 0 1	0.65	- 51°	0.03	178°	0.02	16°	0.00	-164°
0 - 0 1 1	7.18	170°	0.09	5°	0		0	
1 - 1 1 1	3.10	129°	0.14	- 8°	0.11	-164^{*}	0.02	16°
2 - 0 1 1	8.11	76°	0.70	69°	0		0	





 $f_2(s_{2+}) - f_2(s_{2-}) = 2i\rho(s_2) P.V.s f_1(s_1)/D_1(s_1)$

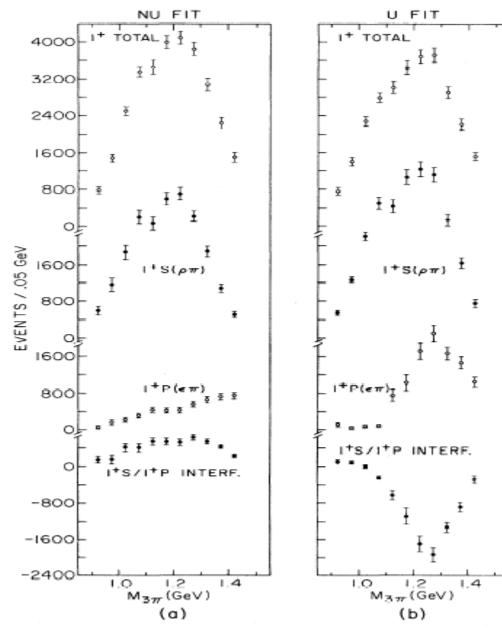


FIG. 9. Comparison of NU (nonunitarized) and U (unitarized fits to the Serpukhov data (Refs. 8 and 9). The number of events per 0.05 GeV is shown for total $J^{P} = 1^{+}$, $1^{+}S(\rho\pi)$, $1^{+}P(\epsilon\pi)$, and $1^{+}S - 1^{+}P$ interference. (a) nonunitarized fits and (b) unitarized fits.

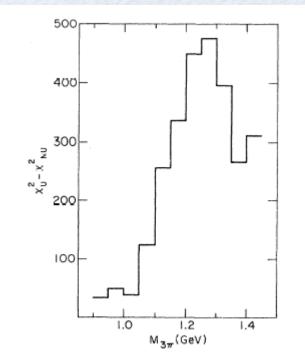


FIG. 7. χ^2 difference between U (unitarized) and NU (nonunitarized) fits to the Serpukhov data (Refs. 8 and 9).