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Abstract

When the anode wires are at high voltage, electrostatic pressure
is exerted on the cathode planes, which causes the planes to bow in
towards the wires near the center of the chamber unless they are sup-
ported by rigid backing material. This note describes the formalism
for estimating this effect assuming that each cathode can be treated as
continuous conducting membrane and that the number of wires in the
chamber is large. For a given maximum allowed deflection, I estimate
the minimum tension that needs to be applied to the cathode plane
before it is attached to its frame.

The performance of an FDC chamber will depend critically on the con-
sistency of the anode-cathode separation h. Variations in A cause variations
in gain across the surface of the detector, which can worsen the resolution of
positions derived from the cathode strip data and can also impact the dE/dx
capabilities of the device. If the cathode planes are unbiased, when the wires
have high voltage applied to them the cathode planes will be attracted to-
wards the wire plane due to electrostatic forces. The purpose of this note is
to describe this effect in an approximate fashion so that I can estimate the
minimum tension I need to apply to the cathode planes during stretching
to satisfy a certain deflection tolerance, assuming that there is no additional
backing material to stiffen the structure.

I approximate each cathode plane as a circular membrane of thickness ¢
and radius a clamped at the perimeter. Figure 1 provides a sketch of the
geometry. The membrane material is assumed to be isotropic (i.e., I ignore
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Figure 1: Sketches of membrane geometry. Left: top view. Right: side view.

the gaps between the cathode strips) with Young’s modulus E and Poisson’s
ratio v. For the purposes of estimating the degree of the bowing effect I
assume that the electrostatic pressure p at the surface of the cathode planes
is independent of position. The deflection in the direction transverse to the
membrane surface will be denoted w(r). The application of the pressure also
causes deflections in the radial direction, which I denote u(r). Subject to
the boundary conditions u(a) = 0 = w(a), u(r) and w(r) have the following
forms:

wr) = wp (1—f>2, (1)

u(r) = rla—r)(co+cr+er*+--). (2)

I truncate the infinite series in u(r) at c,. The strains in the radial and the
tangential directions are given by

du 1 [(dw\®
& = 5*5(%) ’ ()
u
= — 4
€t , (4)

The work done by uniform pressure P applied to the membrane in the direc-
tion normal to the undeflected plane’s surface is given by

W =2r /Oa Pw(r)rdr. (5)
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At equilibrium this is matched by the strain energy 1 due to bending, the
strain energy V) due to stretching of the mid-plane, and the strain energy V5
due to the internal tensile stress o of the membrane, where

dw\’®  2vdw d*w
— 1D / 20) L0 6
Yo T [(dﬂ) (dr) + r dr dTQ}TdT (6)
Et e
Vv, = = / (€ + € + 2ve,e)rdr, (7)
1—-12Jo
Vo = 27mt/ (€ + €)rdr. (8)
0
I define >
t
D= _——" 9
12(1 — 12) Q
Plugging in the expressions for w, €, and ¢, I obtain
321 w2D
Vo = 0 10
0 3 CLZ ) ( )
Vo= Bt 3211)3 k§a4 3a’kok; n Ta®k? n abkoks n 19a" k1 ko n 13a®k2
1— 12 |105a2 4 10 60 5 105 168
—23 4+ 41v 1+11v 93 + 7lv
2ufhoa (=555 ) + dudeths (S35 ) + dwie’le ().
AR (T ) TR (T ) TR T
(11)
2
Vo = gatwo (12)

To obtain the k;’s I require that the total energy of the membrane at equi-
librium be a minimum, which means that

oV

— 0. 1
ok (13)

Solving the resulting system of equations, I obtain

1585 — 7230\ w?
= _— | — 14
o ( 1386 )a?” (14)
17 w?
kl = @(94‘51/)“—2, (15)
32 w?



Then

Vi (17)

a?’

_ wEt (896585 4 529610v — 3428311 w_g
T 1—2 4802490

To find wy, following Timoshenko and Woinosky-Krieger[1] I apply the “prin-
ciple of virtual displacements”:

0

— WV +Vi+V,) 0w, = 27r/aP(5w rdr (18)
owy 0

2\ 2 2
a P
= 27rP<5w0/ <1 — r_2> rdr = 2 dwo,(19)
0 a 3

from which I obtain

896585 + 529610v — 342831v%\ w§ 64D\ wy
P =2F — 4 — ) —. (20
t ( 800415(1 — v?) ) it ( bt a? ) a? (20)
Poission’s ratio for both Copper and Kapton is about v = 0.34, so
3 64D
P =293Et-0 4 (4at + —2> = (21)
a a a

Adding additional terms to the expansion for u(r) does not change the factor
in the first term on the right hand side appreciably; Loy et al.[2] truncated
the expansion after 5 terms and for v = 0.34 they get 2.88, within 1.7% of
our estimate using 3 terms. To ensure a maximum deflection of w4z, the
tension per unit length 7' = ot applied to the membrane during the initial
stretching step should be

T> Pa? 16D 2.93Etw§,maz Pa?

o . 22
- 4w0,maw a? 4a? 4w0,mam ( )

The approximate form is for small deflections in thin membranes with low
flexural rigidity (D — 0) where the internal tensile stress dominates.

In order to estimate the electrostatic pressure, I need to determine the
electric field at the surface of each cathode plane. For the purpose of this
calculation I ignore the gaps between the cathode strips (i.e., the cathodes
be considered to be infinite conducting planes at zero potential; see figure 2).
The wires are assumed to be oriented along the z-axis at ¥y = 0 and evenly
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Figure 2: Sketch of the geometry of a multiwire chamber.

separated by a distance s. The wire plane—cathode plane separation is h.
Following Mathieson[3], the potential due to the wires is given by

1/2
h e ns _ Ty
Py(x,y) = ZC’ V., In cos ] €05 2 , (23)
27?80 p cosh M + cos 57

where V,, is the voltage applied to wire n and C,, is the capacitance per unit
length of wire n. The electric field vector is determined by taking partial
derivatives of P, (x,y) with respect to z and y:

OPy(z,y)
Ey(z,y) = T o
1 C,Vy sinh M cos 5¥ (24)
4heo 7 (cosh ”(mihm) cos g}i)(cosh M + cos 3¥)
0Py (z,y)
Byfo,y) = -2Pood)
1 C,V,, cosh ™2 "s) sin 3
= 4h w(x—ns) Y (w ns) Ty 25)
€0 7 (cosh =% — cos 2hb)(cosh G+ cos 57)

At y = h, the field component in the x-direction vanishes (Ew(x, h) = 0) and
E,(z,h) reduces to

> CpVasech m(@ ns)'

E . 7
y(@, h) = 4th a 2h

(26)



Suppose I have a large number of field wires (radius ;) at potential V; and
positioned at odd values of n and large number of sense wires (radius 7,) at
potential Vi and positioned at even values of n and that the dimensions of
the chamber are much larger than h. Then near the center of the chamber I
can assume that the C),’s can be appoximated by two constants, Cs and CY,
and the electric field at y = h becomes

1 7(x — ns) (x — ns)
E p I 1) h——| .
(2, h) = Theg C’Vngensec oh +Cfon%dsec o
(27)
For n — oo, 1 approximate the sums with integrals:
2 - 2
Z sechw( Zsech ms) R~ / m(e — 2ms) —=dm
_ 7(x — 2m3) h
= tanlexp———— |t =T (28
ms o CXP 2h s (28)
hen C,V, + CyV,
E(x.h) = 238 T 2F7f 2
o) = (29)

If I replace all of the field wires with sense wires, this expression becomes

E,(z,h) = > (sense wires only), (30)

€o0S
which is equation 41 in Sauli[4]. In this approximation I find that E, near
the surface of the cathode planes is independent of z.
The force on a conductor due to an electric field E is given by [5]

— ]_ —
=_ ¢ EodA 1
27g odA, (31)

integrating over the surface S of the conductor. Here o is the charge density
on the surface. In the limit where £ — constant, ¢ — constant and I can
write the electrostatic pressure as

dF 1 (CSVS +Cfo)2

E2(z,h 32
P=a = 0B =055 (32)
For the case where there are only sense wires in the system, this becomes
C?v2
=23 33
86082 ( )
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which is Sauli’s equation 46[4].

Next I need to find expressions for the capacitances per unit length C'
and C;. For the sense wire at {x,y} = {0, 0}, the potential on the surface of
the wire must be Vi:

Y kLo = lko > Loth ¥ Lal. @

where ky and k; are constants related to the capacitar?ce, and
Lo = In 7;—7;, (35)
mSsn
tanh T

Lo = In , for n #0. (36)

For the field wire at {z,y} = {s, 0}, the potential at the surface of the wire
must be Vi:

_ ; knLoy = — lko o Ltk Y Lm] : (37)

n—even n=odd
where
ﬂ'T‘f
L = 38
W= 9)
—1
L, = In tanh% , for n #1. (39)

Equations 34 and 37 form a system of two equations in two unknowns. After
some algebra,

Vi > odd Lno — Vs Xoda Ln

ko = , 40

° (Zodd Lnl) (Zeven LnO) - (Eodd LnO) (Eeven Lnl) ( )
‘/S Zeven Lnl - Vf Zeven LnO

kl = ) (41)

(Zodd Lnl)(zeven Lno) - (Zodd Lno)(zeven Lﬂl)
where the sums have the following forms:
2 1
ZLHO = ZLnl—QZlntanh ms(2m + ), (42)
odd even 4h

S L —1””+2th h (43)

Lm0 = gy nran 2h
7T7"f mTsm
> Ly = In—* 1 +2 Z In tanh T (44)
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The constants ky and k; are related to the capacitance per unit length ac-
cording to C; = 2meoky and Cf = 2mepk; at unit potential. The nominal
detector geometry calls for s = h, for which the expressions for C; and Cfy
simplify to

2me (In L — 0.18 + 0.881%)

CS wr Tr bl 45
0.74 + 0.18(In T3 + L) — In - In 7e (45)

. 27meg (In 2 — 0.18 + 0.88%)
= r T ; 46
F T 074+ 018(In T + TE) —In T In e (46)

provided that V; # 0. For the case where the field wires are replaced by
sense wires, the capacitance per unit length of the wires is

27'('80

1.06 — In =2

which is numerically equivalent to Sauli’s equation 39 when s = h. Combin-
ing equations 32, 45 and 46, I get

_ m% < Veln T 4 Vi ln T 1 0.70(V; + V;) )2 (48)

P= 82 \0.74+0.18(n % + =7) — In 7% In =72

4h

Using ry = 10 pm, ry = 40 pm, s = h = 5 mm, V, = 1.8 kV, and V; =
—0.9 kV, I get p = 0.022 Pa. Thus for a maximum deflection of 50 ym for a
1.2 m diameter membrane, the minimum tension should be 39.6 N/m, using
equation 22.

References

[1] S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells,
New York: McGraw-Hill Book Company, 1959, pp. 400-402.

[2] C. T. Loy, S. C. Pradhan, T. Y. Ng, and K. Y. Lam, J. Micromech.
Microeng. 9(1999) 341-344.

[3] E. Mathieson, Induced Charged Distributions in Proportional Detectors
(unpublished monograph).

[4] F. Sauli, “Principles of Operation of Multiwire Proportional and Drift
Chambers”, CERN 77-09.



[6] J.  R. Reitz, F. J. Milford, and R. B. Christy,
Foundations of Electromagnetic Theory, Reading, Massachusets:
Addison-Wesley Publishing Company, 1980 (3rd edition),p. 95.




