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1 Data Set

This note describes an analysis of amplitude information in four BCal cosmics run that were
taken at Jefferson Lab in 2006: run 2458 (the trigger/paddle was positioned in +100 cm from
the center of the calorimeter), run 2459 (+150 cm), run 2475 (-50 cm), and run 2476 (-150 cm).
The correspondent beal_dst024##.root files were taken from /work/halld/bcal06 directory. The
time information in the bcal_dst024##.root files was not used.

2 Pedestals Check

The calorimeter consists of 18 segments; the segments were arranged in vertical 6 columns
(of 3 segments each). To select the pedestals in the certain segment in some of the columns,
we require the low amplitudes (viz., ade < 10) in the 2 remaining segments of the column of
interest as well as in all segments of the left neighbour and the right neighbour columns (see
Fig.1). The pedestals observed from the most of the segments form compact peaks though the
abnormal-shaped pedestals were observed in some segments (see Fig.2).

Fig.3 shows the mean pedestal values extracted from all 18 segments in 4 runs for North-
side PMTs (top panel) and South-side PMTs (bottom panel). Run-by-run shifts of pedestals
were clearly observed, and all amplitudes in the following analysis were pedestal-corrected on
run-by-run basis.

3 Cosmic "Muon” Selection

To select the cosmic "muon” (i.e., particle that are close to MIP) tracks in the certain segment
in some of the columns, we require the high amplitudes (viz., adc > 70) in the 2 remaining
segments of the column of interest as well as low amplitudes (viz., adc < 10) in all segments of
the left neighbour and the right neighbour columns (see Fig.4). Such a criterion suppresses the
events with a shower and picks out vertical-oriented particle tracks in the calorimeter; it selects
about 15-20% of the total number of events in the run (see Fig.5).

4 Amplitude Spectra

Typical amplitude spectra (after pedestal subtraction) from the North and South PMTs are
shown in Fig.8. For photoelectron analysis of these single-end amplitude spectra, we followed
the general ideas described in the paper [1]. In the high-intensity-light-source limit, the authors



describe the PMT amplitude spectrum from LED standard light pulses as a convolution of the
Poisson distribution (that represents the photoelectron statistical fluctuation) and the Gaussian
functions (that represents PMT gain resolution and the pedestal contribution).

In our case of electromagnetic calorimeter, the widths of the observed spectra are the result of
both the fluctuations in the number of photoelectons (North-South uncorrelated effect) and the
variations in the enegry deposited in the calorimeter segment (North-South correlated effect). To
address this extra-broadening of the spectra, we simulated the energy deposition from the muons
in the realistic model of the calorimeter using FLUKA 2006.3b program [2,3]. In the simulation,
the primary muons polar angles were seeded according to the cos®(#) law, the azimuth angles
as well as the coordinates of the emitting points (in the top trigger paddle limits) were seeded
uniformly, and (to meet the trigger conditions) the hits of the bottom trigger paddle were
required (see Fig.6). The simulated Birks-corrected energy depositions in the fibers summed
over each of the calorimeter segment were recorded on event-by-event basis, and the "muon”
selection cuts were applied. The typical resulting spectra F(AFE) of energy deposited in the
calorimeter segments by 5 GeV /c muons are shown in Fig.7; mean energy depositions AE were
calculated for each of the segments.

Using the simulated F'(AFE) functions, we fit experimental pedestal-subtracted ADC spectra
to the function (red line in Fig.8):

FEmazx Nmax
f(z) N/ d(AE) [F(AE) -+ > Poi(n, k- AE) - Gau(z,n,0,)|, (1)
Emin n=0

where Poi(n, k - AE) is the Poisson distribution with the expected value of (k- AFE), k =
(N,e/AE) is energy-to-NPE conversion factor, Gau(x,n,c,) is the Normal distribution with
the mean value of n and standard deviation of o,. We estimated the value of PMT gain

resolution o, for n photoelectrons using the formula (see [1,4]):

02:ng_1 %nl, (2)
o1 g—1
where ¢ is the mean dynode secondary emission coefficient (in our case, it’s about 4.2), and m
is the number of dynodes in the PMT.
Typical fits to the single-end ADC spectra are shown in Fig.8 as red lines. Fig.9 shows the
distribution of x?/NDF values from 144 (= 18 segmentsx2 endsx4 runs) fits. A summary of
the average numbers of photoelectrons extracted sector-by-sector from single-end ADC spectra

in four cosmics runs is shown in Figs.10-13. The mean number of photoelectrons (viz., N2¢" =

\/ NJYorth . NSouth) averaged over all segments and all runs, is 25.54£0.7 . A strong correlation

between mean amplitudes (averaged on run-by-run basis) and correspondent extracted mean
numbers of photoelectrons is shown in Fig.14; the close-to-linear dependence proves undoubtedly
that the cosmic ray data analysis does reliably extract the number of photoelectrons.

5 Ratio Spectra

Another way to remove most of the dependence on the energy deposition variations and extract
the mean number of photoelectrons from cosmic muons” is to use the spectra of North/South
amplitudes ratio (see Fig.15). We suppose that each of the amplitude spectra has the Poisson-
type shape; consequently, the ratio spectra were fitted to the function (red line in Fig.15):
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where r is a North/South amplitudes ratio, R is an average North/South amplitudes ratio, N,
is the average number of photoelectrons, P is a Poisson-type probability:

P(z,N)=e¢" - N*/T(z +1), (4)

and the (1/r) and (z/r) factors are needed to perform the integration over the uniform r-bins.

A summary of the average numbers of photoelectrons extracted sector-by-sector from the
ratio spectra in four cosmics runs is shown in Fig.16. The N, values of 21.43+1.02, 23.9340.93,
20.9240.70, and 20.8340.75 are extracted from the runs 2458, 2459, 2475, and 2476, corre-
spondingly; these values are in a good agreement. The number of photoelectrons, averaged over
all segments and all runs, is 22.0£0.9 .

Comparison of the results from the single-end spectra analysis (left panel) and the ratio
spectra analysis (right panel) from four cosmics runs is shown in Fig.17.(For the single-end
spectra analysis, we used the geometrical mean of the numbers of photoelectrons from both
ends (= \/Né\e“’”h - Njjouth) ) Both results are in a reasonably good agreement (see Fig.18),
though a slight underestimation of the mean number of photoelectrons from the ratio spectra
analysis originates (most probably) from a non-complete compensation of the energy-deposition
distribution.

6 Correction of Extracted N,. on Non-Constant Light
Transmission and Fiber-PMT Coupling

Recently, concerns were raised in a report [5] that the number of photoelectrons extracted from
the width of amplitude spectra is enormously distorted with fiber-to-fiber non-uniformity in
fiber-PMT coupling. In this section, we address these concerns with a realistic estimation of the
required correction that should be applied to the extracted number of photoelectrons.

Let us assume that the cosmic muon deposits energy ¢; in the ¢-th fiber, this energy is
converted into the light with a constant factor y, and the light is transported to the PMT
photocathode with a transmission/coupling factor C;. The number of photons that arrive at the
PMT photocathode from n fibers:

=y En: (Cie:) (5)

fluctuates with a variation:
Vipn) =y* D_[C7V(e) + ¢ V(C)], (6)

where V(¢;) and V' (C;) are variations for the values ¢; and C;, respectively. Each of the C; factors
can be represented via a mean transmission/coupling factor C' and a fiber-to-fiber deviation d¢;
from the mean value (i.e., 3~ d¢; = 0), so

202 > (C + )’ ZC +20250Z > 6 =nC +aV(C)  (T)

Similar representation of the €; energy deposition via a mean energy deposition (E/n) in the
fiber and a fiber-to-fiber deviation d.; leads to:
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)
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Taking into account that the variation of the total energy deposited in n fibers is:
V(E) = nV(e) (9)

and
V(C) = V(Cy), (10)

we can reduce the variation V(p,) to the following form:

n

Vip,) = y° [V(E) 4 V(E)V(C) + V(C) 22 + V(E)V(C)] =

2

- Ve + 22 (avimy + 2] 1)

n

Please notice a disagreement between formula (11) above and the corresponding formula (4) in
the report [5]: here, formula (11) does not contain a factor of 2 in the (E?/n) term.

From formula (11), we can conclude that the fiber-to-fiber non-uniformity in light transmis-
sion and fiber-PMT coupling can be taken into account as an additional effective broadening to
the energy-deposition spectrum that should be estimated with the realistic cosmic-ray param-
eters. Within the 3.8x3.8 cm? readout window, a PMT collects the light from n=30 layers of
fibers. The simulation for high-energy muons (see ” Amplitude Spectra” Section and right panel
of Fig.7) gives distribution of total energy deposited in the 30 layers of fibers with a mean value £

of about 5.0 MeV and RMS value [= /V(E)] of about 1.2 MeV; these values do not change sig-
nificantly with the variation of the cosmic muon energy. The effective broadening of the energy

deposition distribution [= \/V (p,)/Vo(pn), where Vi(p,) = y>*CV (E)] calculated as a function of

the assumed relative tramsmission/coupling dispersion [= /V(C)/C] is shown in the top panel
of Fig.19; the bottom panel of the Fig.19 shows the mean number of photoelectrons extracted
from the single-end spectra analysis as a function of the assumed relative transmission/coupling
dispersion. The analysis demonstrates that the realistic fiber transmission/coupling dispersion
up to 10-15% leads to a negligible correction in the extracted number of photoelectrons; even
a pessimistic assumption of 50% dispersion requires a correstion for 7 additional photoelectrons
only. Qualitatively, we read out the sum of the signals from 30 fibers (viz., we make an effective
signal average over 30 fibers), so even large dispersions in individual fiber transmission/coupling
are reduced by significant factor in the average value.

7 Attenuation Length of the Light in BCal

Significantly unbalanced PMTs (see Fig.20) require sector-by-sector extraction of the light at-
tenuation length in the BCal. Fig.21 shows fit of typical Mean-Amplitude-vs-Trigger-Position
dependences for one of the North and one of the South PMTs (left and right panels, correspon-
dently) to the exponent function. Also, Amplitude-Ratio-vs-Trigger-Position dependences were
used for the sector-by-sector extraction of the light attenuation length in the BCal (see Fig.22).

Summaries of the attenuation lengths of the light in the BCal extracted from amplitudes
from North or South PMTs and from the ratio of North/South amplitudes are shown in Fig.23
(left and right panels, correspondently). Mean light attenuation lengths extracted using ”one-
side” technique (229.1+2.5 cm) and using the "ratio” technique (235.44+1.7 cm) are in a good
agreement.
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Figure 1: Selection of pedestal events in BCal cosmics data.
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Figure 2: Typical (top-left panel) and abnormal (other panels) pedestal spectra.
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Figure 4: Selection of "muon” events in BCal cosmics data.
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Figure 6: The incident muon parameters seed for the simulation with FLUKA 2006.3b program.
Top-left panel: azimuth angle. Top-right panel: polar angle (viz., the angle between the muons
momentum and a vertical direction). Bottom panels: Y and Z position of the muon start point
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in the bottom trigger paddle was required. The events from red histograms were used as the
input for FLUKA simulation.
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Figure 7: Typical spectra of energy deposited in the calorimeter segments by 5 GeV/c muons
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of the simulation with FLUKA 2006.3b program.) Left panel represents the segment #1 located
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of the calorimeter. Statistics boxes correspond to the red histograms.
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in the run 2475. The red lines are the fits to the spectra (see Eq. 1).
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Figure 19: Calculated effective broadening of A-E distribution (top panel) and the number of
photoelectrons extracted from JLab’06 cosmic data (bottom panel) as a function of assumed
dispersion of fiber transition/coupling factor.
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Figure 20: Sector-by-sector mean values of North/South amplitudes ratios in the run 2475. Note
the significant spread.
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Figure 21: Extraction of the attenuation length of the light in the BCal using amplitudes from
North or South PMTs.
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Figure 22: Extraction of the attenuation length of the light in the BCal using the ratio of
amplitudes from North and South PMTs.
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Figure 23: Summary of the attenuation lengths of the light in the BCal extracted from am-
plitudes from North or South PMTs (left pannel: blue symbols are for the attenuation length
values extracted from the North PMT amplitudes, red symbols are for the values extracted from
the South PMT amplitudes; fit made to whole data set) and from the ratio of North/South am-
plitudes (right panel).
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