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This document overviews the current status and performance of the BCAL simulation and reconstruction
algorithm. The algorithm is largely taken from the KLOE reconstruction code and initial development and
performance characterization was done by Xu et al. and is documented extensively in Ref. [1]. The detector
response and reconstruction algorithms are outlined below. Particular emphasis is placed on features of the
algorithm that have not already been discussed in [1].

1 Detector Response

1.1 Geant Level

Showers the in BCAL are simulated using the Geant-based Hall D Monte Carlo. This simulation models
secondary particle development in a shower, but does not contain information about fiber geometry or the
production and collection of scintillation light in the fibers and readout electronics. For each cell in the
BCAL, the simulation produces three quantities:

Ecell =
∑

i

dEi, (1)

zcell =
∑

i zidEi

Ecell
, and (2)

tcell =
∑

i tidEi

Ecell
. (3)

Here the index i runs over the Geant steps taken by charged particles in the shower and dE, t, and z
are energy deposition, time, and z location at each step. Cells with energy, Ecell, greater than 1 MeV1 are
written to disk for further processing. At this level the deposited energy and energy weighted time and z
position are stored for each cell. These stored values will then be turned to a electronics response for the
photo-detecting elements at each end of the cell.

1.2 Sampling Fraction Fluctuations

Independent Monte Carlo studies [2] have shown that the scintillating fiber geometry of the BCAL samples
approximately 12% of the charged particles in the shower roughly independent of energy. This sampling
fraction however has statistical fluctuations that are energy dependent. This is logical since the energy
deposited in a cell is directly proportional to the number of charged particles in a cell, and with more
charged particles, the statistical fluctuations on the fraction of charged particles sampled by the scintillating
fiber decreases. Monte Carlo studies [2] have shown that these fluctuations are Gaussian-distributed with a
width as a fraction of the mean sampling fraction, σf

f , of

σf

f
=

A√
Ecell

dep

+ B, (4)

1This threshold will be justified in the proceeding section.
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where Ecell
dep is the total energy deposited in the cell. The parameters A and B are 4.217% and 1.288%,

respectively.
To properly simulate this effect in the Monte Carlo, for each cell we introduce a sampling fraction scale

factor, scell, where scell is drawn at random from a Gaussian distribution with width given by Equation 4.
We then reset

Ecell → scellEcell. (5)

Note that the sampling fraction fluctuations on the readout of each end of the module are correlated. This
procedure maintains this correlation since fluctuations are introduced before signals are propagated down to
the ends of the module.

1.3 Time Delay and Attenuation

After sampling fraction fluctuations have been introduced, the propagation of the scintillation light down the
module is modeled. If we take ∆zup and ∆zdown as the distance from zcell (defined above) to the upstream
and downstream readout elements, then we can write the attenuated energy and delayed time as

Eup = Ecelle−∆zup/λ, (6)
Edown = Ecelle−∆zup/λ, (7)

tup = tcell + ∆zup/c′, and (8)
tdown = tcell + ∆zdown/c′, (9)

where λ = 300 cm is the attenuation length and c′ = 16.75 cm/ns is the effective speed of light in the fiber.

1.4 Electronics Threshold

To reduce data volume, the outputs of photo-sensing devices are zero-suppressed. Since this effectively
removes cells with low energy around the borders of a shower, the same zero-suppression must be applied in
the Monte Carlo in order to model the resolution of the detector. While this electronics threshold is a strong
function of the choice of readout device, light output of the scintillating fibers, and desired zero-suppression
factor, we attempt to make a reasonable estimate for the threshold as follows. We first make the following
assumptions:

• the data readout limits the maximum occupancy in the BCAL for any given event to 5%

• the window of integration for BCAL pulses is 100 ns

• the dark rate in the readout device is purely single photoelectron noise at a rate of 60 MHz

• the width of the pedestal is dominated by dark rate and not electronics noise

• it takes 26 keV of unattenuated deposited energy in the fibers produce one photoelectron2

Given the 60 MHz dark rate the probability to have 11 or more dark pulses in a single 100 ns window is
about 4%, so we take 11 photoelectrons as the threshold. To reach 11 photoelectrons we need 286 keV
of deposited energy in the fibers, or, assuming a sampling fraction of 12%, 2.4 MeV of energy in the cell
after attenuation. Note that this is significantly higher than the unattenuated 1 MeV cutoff used in Geant
generation. After sampling fraction smearing and attenuation procedures described above, all hits which are
less than 2.4 MeV are removed.

2This number comes from discussion with G. Lolos. Studies to experimentally validate this are underway by A. Seminov.
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1.5 Additional Response Effects

There are additional errors in digitization and response that are not currently modeled in the simulation.
These errors include:

• errors due to statistical fluctuations in the number of photons detected by the photosensor

• errors in that contribute to the timing resolution of the pulses such as intrinsic timing resolution of
scintillator and photosensor

• errors due to electronics digitization of the signals such as limited precision due to the size of the least
count in both the ADC and TDC

As these effects are better understood they should be incorporated into the response algorithm.

2 Shower Reconstruction

The reconstruction algorithm implemented3 is as described in [1]. In short, the algorithm converts upstream
and downstream hits to single cell hits. These hits are characterized by x, y, z positions, E, and average
t, where z is calculated by the end-to-end time difference and E has been corrected for attenuation based
on the value of z. The algorithm then does a purely geometrical clustering of hits with no consideration of
energy deposition. Cells that are simply neighboring other cells are collected together to form clusters. If
~ri and ti are the energy-weighted positions and average time of the cluster, clusters that meet the following
criteria are merged.

|~r1 − ~r2| < 40 cm (10)
|t1 − t2| < 2.5 ns (11)

|r1z − r2z| < 30 ns (12)√
(r1x − r2x)2 + (r1y − r2y)2 < 40 cm (13)

In addition, clusters are split in the z direction if their r.m.s. time is greater than 5.0 ns. These thresholds
are implemented in the algorithm as parameters and should, at some point, be re-evaluated and adjusted if
necessary. The values shown above are values determined by the authors of [1]. After the cluster merging
and breaking routines, final energy-weighted spacial positions for the showers are determined.

As a final step in the reconstruction algorithm, the 3D energy-weighted position within a layer for each
cluster is determined. These 3D points are projected onto the x, y, and z axis and fit to lines so that a
parametric representation of the path of the photon can be inferred. One can write the location of photon
as a function of some parameter, s, in a 3D “point-slope” form as

~d(s) = ~a + s~c. (14)

The vectors ~a and ~c (and their errors) are determined by the series of linear fits done by the reconstruction
code. Ideally ~c should be parallel to the flight path of the photon.

To avoid creation of spurious clusters due to isolated low energy cells in the calorimeter, all showers
with energy less than 20 MeV are removed. This cluster threshold can be adjusted with a parameter in the
reconstruction code.

After examination of the reconstruction code, two items merit further study in the future:

• The energy deposited in each cell is a straight average of the attenuation-corrected energies on the
upstream and downstream ends. The end with the largest energy detected presumably is the most
precise, so perhaps a weighted average could be introduced to reduce the error on each cell’s energy
measurement.

3Currently this algorithm is utilized when data of the type DBCALShower is extracted with the tag IU. The functional
differences between this algorithm and the default algorithm are the addition of a cluster threshold and removal of “corrected”
energy. The most noticeable change is well over an order of magnitude speed increase.
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Figure 1: A plot of the ratio of the reconstructed energy to generated energy as a function of incident photon
position along the BCAL. Photons are generated uniformly in energy from 0 - 2 GeV.

• The algorithm requires that both ends of a cell be hit for the cell to be included in reconstruction.
Therefore no information is used from low energy cells where one hit is lost due to attenuation. The
algorithm could probably be improved by adding back these single-sided hits after clusters have been
formed.

At this stage of the reconstruction one has formed showers in the calorimeter, determined their position,
and fit a photon trajectory using layer information. However, there is some energy loss due to leakage and
cells that do not exceed the electronics threshold. The reconstructed shower energy, Erec must be rescaled
to account for these effects and accurately represent the incident photon energy.

3 Energy Calibration

Calibration of the BCAL is done by uniformly populating the detector in z and φ with photons that have an
energy between 0 and 2 GeV. All photons are thrown from the center of the target. For the sake of energy
calibration, we consider only events where the thrown photon did not convert before reaching the BCAL,
and exactly one BCAL shower was reconstructed. For these events the ratio of reconstructed to generated
energy as a function of incident photon position is show in Figure 1. As expected leakage at the ends of the
BCAL causes an underestimate of reconstructed energy. One also notices a slight z dependence on this ratio
– it is peaked in the near the middle of the BCAL.

To extract the z-dependent energy calibration, we divide the sample pictured in Figure 1 in slices along
the x-axis (z position of the incident photon). We avoid the ends of the BCAL and take a total of fourteen
25 cm slices from 30 cm to 380 cm. The ratio of reconstructed to generated energy as a function of generated
energy for each of the BCAL regions is shown in Figure 2. Following the parametrization suggested by
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M. Kornicer, profile plots of the data are fit to the function

Erec

Egen
= NEε

gen, (15)

where N and ε are free parameters. The fit is performed over the range Egen > 50 MeV and models the
data well. For Egen < 50 MeV there is an upward bias in the reconstructed energy because the modeled
electronics threshold is more likely to select those those which have had large upward sampling fraction
fluctuations, thus this point is excluded from the fit.

As one might expect, the parameters ε and A exhibit z-dependence show in Figure 3. The scale factor,
N , shows a strong z-dependence that likely arises from several competing effects:

• Showers on the ends of the BCAL are likely to loose low energy cells because attenuation causes
opposite side hits to be below the electronics threshold. This generates the peaking near the middle.

• Showers at higher z enter at a shallower angle. The increased path length in a cell boosts the energy
deposition and offsets the first effect above.

• The leakage of energy outside the BCAL is has a z dependence.

The first effect is symmetric about the center of the BCAL while the latter two effects are symmetric about
the target. To model this dependence, the scale factor, N , is fit with with a third-order polynomial for
photons striking the BCAL downstream of the target (z >= 65 cm). For the region z < 65 cm, N is
assumed constant at N(z = 65 cm). Thererefore, we have

N(z) =
{

0.8015 + 1.740× 10−3z − 6.804× 10−6z2 + 7.162× 10−9z3 if z ≥ 65 cm,
N(65 cm) if z < 65 cm.

(16)

For the nonlinearity term, ε,

ε(z) = 4.441× 10−2 − 1.183× 10−4z + 3.482× 10−7z2. (17)

In both cases, z, in centimeters, is the position at which photon strikes the inner radius of the BCAL in the
global coordinate system.

With N and ε given by the equations above we correct the reconstructed shower energy by setting

Erec →
(

Erec

N

) 1
1+ε

. (18)

4 Reconstruction Performance

Users wishing to work with calibrated BCAL photons should extract DBCALPhoton objects, not the underlying
DBCALShower objects from which they are built. The DBCALPhoton objects provide an interface to the location
of the cluster in the global coordinate system, the lorentz momentum of the photon, and the results of position
vs. layer fit done by the reconstruction code. Preliminary examination of the postion vs. layer fit indicates
additional tuning is needed; therefore, we construct the flight direction of the photons by assuming they
originate from the center of the target.

4.1 Energy Resolution

To examine the characteristic resolution of the BCAL, we consider photons distributed uniformly in energy
between 0 and 2 GeV and uniformly in incident z position in the region 30 cm < z < 380 cm. This avoids
the ends of the BCAL where there is excessive leakage4. Furthermore we require that generated photons

4Additional studies of photon efficiency in the BCAL/FCAL overlap region are underway by M. Kornicer.
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Figure 2: Energy dependence of the ratio of the reconstructed to generated energy for various ranges if z
position of incident photons. Data are shown in boxes with an overlaid (red) profile plot. The fit for the
> 50 MeV region is to the form NEε

gen, where N and ε are free parameters.
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Figure 3: Plots of the z dependence of the energy scale, N , and nonlinearity, ε, parameters with fits to third-
order (N) and second-order (ε) polynomials. Note: Error bars on these data points are artificially large
due to the method of construction of the profile plots from which the parameters are extracted. Smooth z
dependence on a scale much smaller than the indicated statistical error is visible.
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Figure 4: Left: A plot of the fractional energy error vs. z position. There is no noticeable z dependence in
the corrected energy resolution. Note that the BCAL is populated uniformly in z; therefore, variations in
efficiency introduce variations in the peak height as a function of z. Right: A fit to the standard deviation
of the fractional energy error, σE/E as a function of energy.
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did not convert before striking the BCAL and exactly one BCAL shower is found. Therefore, what follows
is an accurate representation of the resolution of cleanly reconstructed photons in the BCAL, but does not
reflect efficiency loss or combinatoric background that is produced by conversions. Figure 4 (left) shows the
dependence of the fractional energy energy error on z position. The fact that no dependence is observable
indicates that the previously mentioned z-dependent energy calibration is effective. The resolution appears
to be relatively constant in z. This plot is derived from a sample that was generated uniformly in z; therefore,
variations in the peak height are due to variations in the efficiency. Figure 4 (right) gives the characteristic
energy resolution of the BCAL and is fit to a function of the form:

σE

E
=

A√
E

+ B (19)

where the statistical (A) and floor (B) terms are 5.4% and 0.3%, to be compared to what was obtained in
the BCAL test beam analysis: A = 5.5% − 6.1% and B = 2.4% − 3.0% depending on analysis method [3].
It is not surprising that the Monte Carlo resolution is better than beam tests indicate. The Monte Carlo is
calibrated on a precisely known photon energy and also does not model all contributions to the resolution.
(Some of the missing contributors are discussed in Section 1.5.)

4.2 Position Resolution

At this stage the Monte Carlo does not sufficiently account for effects that degrade the timing resolution
of the detector. Therefore, current polar angle, θ, and longitudinal position, z, resolution estimates are
optimistic. Figure 5 shows both the absolute error in polar angle and photon impact z position as a function
of z position. Again photons are generated uniformly in z and in energy from 0 to 2 GeV. The observed
structure in the peak height as a function of z is due to efficiency variation. Errors in polar angle can be
written in terms of the (more fundamental) z position error as

δθ =
r

z2 + r2
δz. (20)

One notices from Figure 5 that while the z resolution degrades as one moves downstream due to dispersion
of the shower along the BCAL axis the polar angle resolution still improves because of the z2 factor in the
denominator in RHS of the expression above. Give the speed of light in fibers is roughly 17 cm/ns, position
resolutions on the order of a couple of millimeters (as indicated in the plots) are clearly optimistic. The
simulation needs a more realistic model of the timing resolution of the detector response.

The resolution in azimuthal angle, φ, is derived from the shower position in the transverse plane, which
is related to the energy-weighted average position of the cells the cluster. Unlike polar angle resolution,
azimuthal angle resolution does not depend on timing information and therefore we expect the simulation
to accurately model this. Figure 6 shows the absolute error in φ for photons evenly distributed in z and in
energy between 0 and 2 GeV. The characteristic resolution obtained from this plot of 5.6 mrad is slightly
better than the stated design goal of 8.5 mrad [4].

4.3 Efficiency, Conversions, and Shower Fragmentation

Up until now we have concerned ourselves primarily with the resolution for well reconstructed showers in
the BCAL. Problems with reconstruction arise typically when photons convert before hitting the BCAL.
Conversions can result in completely loss of efficiency (no photon detected in BCAL) or the resulting e+/e−

pair can produce a pair of showers in the BCAL. Both efficiency loss and spurious showers produced by pair
conversions are problematic for event reconstruction. Using the Monte Carlo sample which populates the
BCAL uniformly in z with photons from 0 to 2 GeV, we can make a rough estimate of the size of these
effects.

Figure 7 (left) shows the point of intersection in the z direction of generated photon trajectory with
the BCAL for events with various numbers of reconstructed BCAL showers found. One notices that when
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Figure 5: Absolute reconstruction error in z position of photon impact point (left) and polar angle (right)
as a function z position of photon impact point.
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Figure 6: Distribution of absolute error in azimuthal angle reconstruction. The data are fit nicely to a
Gaussian with σ = 5.6 mrad.
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Figure 7: (left) z point of intersection of photon trajectory with BCAL for events in which various numbers
of BCAL showers were found. (right) For events with two showers found in the BCAL, the energy of the
lowest shower versus the energy of the highest shower.

photons are thrown near the ends of the BCAL they are frequently not reconstructed. In addition one can
see structure corresponding to the FDC rings that suppresses the number of events in which one BCAL
shower is found and enhances the number of events where zero or two BCAL showers are found5. Because
the initial parent sample of events is flat in this variable, the efficiency for clean, single shower events is
proportional to the black line.

Figure 7 (right) isolates those events in which two showers were detected in the BCAL and plots the
energy of the low energy shower versus the energy of the high energy shower. One notices that for the
full range of high energy showers, there is noticeable pileup of an additional low energy shower in the 50 -
100 MeV region. These low energy showers are a source of combinatoric background and could affect low
energy photon reconstruction. Additional work should be done to examine the spacial separation between
these showers and neighboring high energy showers since shower fragmentation could be a symptom of an
sub-optimal reconstruction algorithm.

In summary, we have demonstrated that, while additional tuning is needed, the simulation and recon-
struction algorithms are performing in a reasonable fashion. Further studies are best carried out in the
context of full event simulations where the effect of backgrounds and efficiency can be better understood.
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