FDC Status

Simon Taylor, Daniel S. Carman JLAB

Material issuesLorentz effect

Material Issues

DC review (March '07):

"[p]riority should be given to studying design modifications that would significantly reduce the amount of material in the GlueX tracking chambers"

- Our response
 - Reduce thickness of Kapton from 50 microns to 25 microns
 - Reduce thickness of Copper from 5 microns to 2 microns
 - Reduce or eliminate Rohacell backing for cathode planes
 - Replace solid G10 frames with G10/foam laminates

Active	Material	Number of layers	Thickness per layer (g/cm ²)	Radiation Length (g/cm ²)	X/X_0
Area.	Kapton	48	0.003550	40.56	0.004201
no form	Copper	48	0.001792	12.86	0.006689
no roam	Mylar	48	0.000876	39.95	0.001052
	Argon	24	0.000660	19.55	0.000810
	CO_2	24	0.001110	36.20	0.000736
	Air	48	0.000603	36.60	0.000790
	Total (2 μ	ım Cu)		All 4 packages	0.0143

Material Issues

DC review (March '07):

"[p]riority should be given to studying design modifications that would significantly reduce the amount of material in the GlueX tracking chambers"

- Our response
 - Reduce thickness of Kapton from 50 microns to 25 microns
 - Reduce thickness of Copper from 5 microns to 2 microns
 - Reduce or eliminate Rohacell backing for cathode planes
 - Replace solid G10 frames with G10/foam laminates

Active	Material	Number of layers	Thickness per layer (g/cm ²)	Radiation Length (g/cm^2)	X/X ₀	
Area.	Kapton	48	0.003550	40.56	0.004201	was V
no form	Copper	48	0.001792	12.86	0.006689	5 (01)
no roani	Mylar	48	0.000876	39.95	0.001052	5.6%!
	Argon	24	0.000660	19.55	0.000810	
	CO_2	24	0.001110	36.20	0.000736	
	Air	48	0.000603	36.60	0.000790	
	Total (2 μ m Cu)			All 4 packages	0.0143	

Radiation Length Scan

Effect of Reduced Material on $\delta p/p$

Reduction of Copper/Kapton thickness → significant improvement 5°-13°
 Reduction of foam backing → further improvement possible...

Original Design 5mm foam backing No foam backing

Intermediate foam thickness: $2 \text{ mm} \rightarrow 2.2\% \text{ X/X}_{0}$

Inactive Area

Inactive Area Redesign

The Lorentz Effect

FDC packages in high magnetic field
 Drifting electrons deflected away from plane for B=0 case → Lorentz angle θ₁

Avalanche position is shifted from track position at measurement plane → need to apply correction...

Correction parameterized using Garfield

FDC Reconstruction Flow Chart

FDC Reconstruction Flow Chart

Riemann Helical Fit

Map points on circle in *xy*-projection
 → points on circular paraboloid surface

 Finding center, radius of circle → fitting plane in xyw-space

• Extension to helical path:

- Compute arc lengths *s* from point to point in *xyz*-space
- Linear regression of *s* on $z \rightarrow$ tangent of dip angle *tan* λ

 Fitted segment → resolution of left-right ambiguity, correction for flight time

Riemann Fit Algorithm

Efficacy of Lorentz-effect Correction

Effect implemented in HDGeant
Threw pion tracks from center of target (no background, no smearing)

 Compared corrected pseudopoints with truth points

Technique works equally well for track emerging from other z-positions within target...
Origin of ~15% failure rate under investigation...

Jefferson Lab

Study of Small Prototype in B-field

- <u>Goal</u>: measure the effect of magnetic field on resolution and position along the wire
 - i.e., want to understand the shift due to the Lorentz effect as a function of the magnetic field
 - Compare shift to Garfield calculations and apply corrections
- <u>Method</u>: place prototype within old pair spectrometer magnet in Hall-B alcove
 - Angular range of incidence of tracks ~ 5°
 - Two different gas mixtures: 40% Ar/60% CO₂, 90% Ar/10% CO₂
 - 90/10 mixture enhances effect (average Lorentz angle @ 2.2T ~40°)
 - 40/60 mixture is reasonable choice (average Lorentz angle @ 2.2T ~17°)
 - Maximum field ~ 1.2 T \rightarrow maximum deflection ~ 1 mm for 40%Ar/60% CO₂

Magnet Test Experimental Setup

Imaging the Wires

Time-to-distance Calibration

Correlation between MWDCs and prototype

Full Scale Prototype

Design of full-scale prototype underwayTentative schedule

- STB and HVTB design completed this year.
- Composite frames completed early next year.
- Wire winding in first quarter of 2008.
- Cathodes orders in first quarter of 2008.

Assembly in second quarter of 2008.

Summary

- Addressed concerns of DC Review Committee regarding material in FDC
 - Reduction of amount of Copper/Kapton/foam in active area
 - Replaced solid G10 frames with composites in inactive area
- Studied effect of magnetic field on chamber performance
 - Simulation with Garfield, implementation in HDGeant
 - Track segment reconstruction using Riemann Helical Fit
 - Test with Pair-Specrometer Magnet in Hall-B, analysis ongoing...
- Future plans: study the performance of the ASICs with small-scale prototype

