

Hall-D and the GlueX Experiment at Jefferson Lab

Simon Taylor / JLAB

Exotic Mesons The 12 GeV Upgrade Hall D GlueX Outlook

Gluonic Degrees of Freedom

Gluonic Degrees of Freedom

Quark Pairs and Triplets and Glue?

• Conventional hadrons: $q\bar{q}$ or qqq

Strong force mediated by gluons...

... but glue not needed to describe these states (quark model)...

• Gluons carry color charge \rightarrow can couple to each other

simple quark model

Quark Pairs and Triplets and Glue?

• Conventional hadrons: $q\bar{q}$ or qqq

Strong force mediated by gluons...

... but glue not needed to describe these states (quark model)...

Jefferson Lab

• Gluons carry color charge \rightarrow can couple to each other

Lattice Calculations

Flux tubes realized in LQCD

D. Leinweber

JA

Plucking the Flux Tube

How do we look for gluonic degrees of freedom in spectroscopy?

Radial excitations

Production of Exotic Mesons

Choice of probe may determine accessible quantum numbers
 Photon beam increases chance for producing mesons with exotic quantum numbers

QCD Exotic Topologies

Mass scale ~ 2 GeV

 $\eta_1 \rightarrow a_1^+\pi^- \rightarrow (\rho^0\pi^+)(\pi^-) \rightarrow \pi^+\pi^-\pi^+\pi^$ all charged

 $h_0 \rightarrow b_1^\circ \pi^\circ \rightarrow (\omega \pi^\circ)\gamma\gamma \rightarrow \pi^+\pi^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma$ many photons

h $_{2} \rightarrow K_{1}^{+}K^{-} \rightarrow \rho^{\circ}K^{+}K^{-} \rightarrow \pi^{+}\pi^{-}K^{+}K^{-}$ strange particles

Final state particles $\pi \pm K^{\pm} \gamma p$

Partial Wave Analysis

- States expected to be broad with multi-particle final states
 - Bump hunting in cross section data not expected to be sufficient
- Need PWA:
 - Identify the J^{PC} of a meson
 - Determine production amplitudes & mechanisms
 - Include polarization of beam, target, spin and parity of resonances and daughters, relative angular momentum

Evidence for Exotic Mesons

State	Processes	 Candidates with J^{PC}=1⁻⁺ States are controversial → issues with amplitude analysis Possible leakage due to acceptance or insufficient wave sets Problems with interpretation of line shapes and phases Physics interpretation as hybrids instead of qqqq states open to question π₁(2000) needs confirmation
$\pi_1(1400) \to \eta \pi$	$\pi^- N$ Interactions	
$\pi_1(1600) \to \eta' \pi$	piv Annihilations	
$\pi_1(1600) \to \rho \pi$	$\pi^- N$ Interactions	
$\pi_1(1600) \to b_1 \pi$ $\pi_1(1600) \to f_1 \pi$		
$\pi_1(2000) \to b_1 \pi$ $\pi_1(2000) \to f_1 \pi$		

The GlueX Experiment

• Goal: definitive and detailed mapping of hybrid meson spectrum

- Search for smoking gun signature of exotic J^{PC} hybrid mesons
 - Exotics do not mix with $q\overline{q}$ mesons
- Plans for ss and baryon spectroscopy

• <u>Tools for the GlueX Project</u>:

- Accelerator: 12 GeV electrons, 9 GeV tagged, linearly polarized photons with high flux
- Detector: hermiticity, ability to detect both charged and neutral particles with good resolution
- Partial- Wave Analysis: spin-amplitude of multi-particle final states
- Computing power: 1 Pb/year data collection, databases, distributed computing, grid services...

DOE Generic Project Timeline

Overview of 12 GeV Physics

Hall D exploring origin of confinement by studying exotic mesons

Hall B understandingnucleon structure via generalized parton distributions

Hall C precision determination of valence quark properties in nucleons and nuclei

Hall A short range correlations, form factors, hyper-nuclear physics, future new experiments

Architect's rendering of Hall-D Complex

The Hall-D Complex

Coherent Bremsstrahlung Beam

The GlueX Detector

Central Drift Chambers

- Track charged particles in central region (140° < θ < 20°)
 25 radial layers of straw tubes
 - 17 straight layers
 - $4 + 6^{\circ}$ stereo layers
 - 4 6° stereo layers
 - dE/dx capability for p<450 MeV/c
 - \rightarrow identify protons

Forward Drift Chambers

- <u>Purpose</u>: track forward-going ($\theta < 20^{\circ}$) charged particles
- <u>Design</u>: 4 packages each containing 6 cathode strip chambers
 - Cathode strip chamber: cathode plane / wire plane / cathode plane
 - Drift chambers with cathode readout
 - Cathode planes divided into strips oriented at $\pm 75^{\circ}$ with respect to wires
 - Each chamber rotated with respect to its neighbor by 60°
 - Position resolution goal $< 200 \ \mu m$

Cathode Strip Chambers

Small-scale prototype

Readout for cathode strips: CAEN V792 charge-integrating ADCs
Readout for sense wires: CAMAC discriminator / F1 TDC

Imaging the wires

• Use centroids on both views to reconstruct wire positions

- Avalanche occurs near wire $\rightarrow x$ -positions quantized
- $x_{wire} \propto 1/\sqrt{2}$ (<u>+<v>) using cathode data only
- Gaussian fits to reconstructed wire positions \rightarrow resolution

Jefferson Lab

Barrel Calorimeter

- Photon detection in central region
- Alternating lead + scintillating fiber layers
 - Sampling Fraction = ~12%

BCAL in Test Beam

Barrel Calorimeter Configuration

Barrel Calorimeter

Silicon Photomultipliers

Technology choice for readout of inner layers

SiPM Measurements

 Sensitivity to green wavelengths ⇒ good match to BCAL fibers

• Clean photo-electron spectrum observed for 35 μ m pixel, 3×3 mm² sensor at - 20°C

• Would prefer to run near room temperature...

Time-of-flight Detectors

- Particle identification for forward-going charged tracks
- Two layers of scintillating plastic
 - 250x6x2.54 cm³ bars
 - ~ 168 channels
 - Timing resolution goal $\sigma < 100 \text{ ps}$

Forward Calorimeter

- Detect photons in the forward direction
- Array of $4 \times 4 \times \text{cm}^2$ lead glass blocks (~ 2800 channels)
 - Crystals already in hand (recycled from E852 and RadPhi)

DAQ and Trigger

Trigger rate: 200 kHz, Data rate: 100 MB/s
No dead time ⇒ pipelined electronics...

Electronics

• Custom electronics in VME-64X/VXS

16 channel 250 Msps Flash ADC

Event Simulation

Sample Signal Event

Summary and Outlook

The 12 GeV upgrade project has passed a major milestone
DOE awarded CD-2 in November (3rd out of 5 CD levels)
The GlueX experiment is a major part of the upgrade

• Goal is to map out spectrum of hybrid mesons

- Major construction project with brand-new hall and detector
 - Detectors are in design and prototype stage
 - ... there's still a lot of work to do!

• CD-3 (Approval to start construction) is expected next year

We welcome new collaborators!

Hall D Workshop

"Photon-hadron physics with GlueX in Hall D" Jefferson Lab, March 6-8, 2008

• Topics include:

- Chiral anomaly and Primakoff effect
- Charm production near threshold
- Exclusive reactions at high momentum transfer
- Nuclear effects in photo-production
- Meson and Baryon Spectroscopy
- Detector upgrades

Additional Slides

Overview of Technical Performance Requirements

Hall D	Hall B	Hall C	Hall A	
excellent hermeticity	luminosity 10 x 10 ³⁴	energy reach	installation space	
polarized	hermeticity	precision		
E _r ~8.5-9 GeV	11 GeV beamline			
10 ⁸ photons/ s	target flexibility			
good momentum/angle resolution		excellent momentum resolution		
high multiplicity reconstruction		luminosity up to 10 ³⁸		
particle ID				

Design Parameters

Capability	Quantity	Range
Charged particles	Coverage	1 ° < θ < 1 40 °
	Momentum Resolution (5°-140°)	σ _p / p = 1 – 3%
	Position resolution	σ ~ 150-200 μ m
	dE/dx measurements	20 < θ < 140 °
	Time-of-flight measurements	σ _t < 80 ps
	Cerenkov and π/K separation	θ < 14 °
	Barrel time resolution	σ _t < (150 + 50 /√E) ps
Photon detection	Energy measurements	2 < θ < 120 °
	Veto capability	120 < θ < 170 °
	LGD energy resolution (E > 100 MeV)	σ _ε /Ε = (3.6 + 7.3/√Ε)%
	Barrel energy resolution (E > 40 MeV)	σ _ε /Ε = (2 + 5/√Ε)%
	LGD position resolution	σ _{x,y,} ~ 1 cm
	Barrel position resolution	σ _z ~ 4 cm
DAQ/trigger	Level 1	200 kHz
	Level 3 event rate to tape	15 kHz
	Data rate	100 MB/s
Electronics	Fully pipelined	Flash ADCs, multi-hit TDCs
Photon Flux	Initial: 10 ⁷ γ/s rate	Final: 10 ⁸ γ/s

Linear Polarization

Linear polarization is:

Essential to isolate the production mechanism (M) if X is known

✓ A J^c filter if M is known (via a kinematic cut)

Degree of polarization is directly related to required statistics

Linear polarization separates natural and unnatural parity

States of linear polarization are eigenstates of parity. States of circular polarization are not.

Linear Polarization

