

The GlueX Forward Drift Chambers

Simon Taylor

Jefferson Lab, Newport News, VA, USA On behalf of the GlueX Collaboration

The Forward Drift Chambers

- <u>Purpose</u>: track forward-going ($\theta < 20^\circ$) charged particles
- <u>Design</u>: 4 packages each containing 6 cathode strip chambers

- Cathode strip chamber: cathode plane / wire plane / cathode plane
 - Cathode planes divided into strips oriented at $\pm 75^{\circ}$ with respect to wires
 - Each chamber rotated with respect to its neighbor by 60°

GlueX Forward Drift Chambers

2

Electrode Configuration

- Our design: sense and field-shaping wires
- Drift time + cathode data \rightarrow space point (x,y,z)

3

Jefferson Lab

GlueX Forward Drift Chambers

Small-scale prototype

Readout for cathode strips: CAEN V792 charge-integrating ADCs
Readout for sense wires: CAMAC discriminator / F1 TDC

Imaging the wires

• First prototype: $\pm 45^{\circ}$ between strips and wires $x_{wire} \propto 1/\sqrt{2}$ (<u>+<v>) using cathode data only Field HV = -500 V Sense HV=+2450 V 40% Ar / 60% CO

Results for 75° planes

GlueX Forward Drift Chambers

6

Effect of Magnetic Field ("Lorentz Effect")

Presence of magnetic field causes change of direction of drifting electrons relative to B=0 $\tan\theta_L \approx \frac{\left|\vec{v}_D \times \vec{B}\right|}{|\vec{v}_D|}$ $|\vec{E}|$ Drift velocity depends on gas choice Causes displacement of avalanche position along wire \rightarrow can correct for this in software

• Expected to worsen spatial resolution...

Effect will be smallest for most downstream FDC package, largest for packages nearest to *CDC*...

Modeling the "Lorentz Effect"

 GARFIELD calculations using map for full magnetic field

• Amount of deflection along wire well-characterized by a plane for 40% Ar / 60% CO

8

Created table of slope parameters describing planes as function of r and z (position along beam line)

• Code interpolates deflection from table assuming ionization point at DOCA

Correcting for "Lorentz Effect"

•Simulated π^+ tracks incident on FDC packages ($\theta = 1^\circ - 19^\circ$)

- Lorentz effect on in simulation
 - Direction of deflection depends on side of wire π⁺ passes through gas volume
- Reconstruction: resolve ambiguity locally, interpolate correction from table obtained with Garfield

GlueX Forward Drift Chambers

Note: no additional smearing...

Left-right ambiguity appears to be resolved correctly for majority of hits...

9

Summary and Outlook

• Forward Drift Chambers track forward-going particles with Cathode Strip Chambers

- Design goal $\sigma_v < 200 \,\mu m$ along wire achievable with $\pm 75^\circ$ planes
- Deflection of avalanche position due to magnetic field can be modeled and corrected for in software
- Construction of full-scale prototype underway...

