

The GlueX Forward Drift Chambers

Simon Taylor

Jefferson Lab, Newport News, VA, USA
On behalf of the GlueX Collaboration

Design Parameters

- Purpose: track forward-going ($\theta < 20^{\circ}$) charged particles
- Design: planar drift chambers with wires perpendicular to beam line
 - 4 packages of 6 layers
 - Goal: reconstruction of track segments in each package
 - \rightarrow Resolve ambiguities locally
- Chambers inside bore of magnet
 - Need to operate in high (2.2 T) magnetic field \rightarrow "Lorentz effect"
- Will operate in conditions of high electromagnetic background rate
 - Need to minimize material in active area
 - ... but also need good pattern recognition

⇒ Cathode Strip Chambers

- Measure position along the wires
- + wire readout

The Forward Drift Chambers

- Design: 4 packages each containing 6 Cathode Strip Chambers
- Cathode strip chamber: cathode plane / wire plane / cathode plane
 - Cathode planes divided into strips oriented at $\pm 75^{\circ}$ with respect to wires
 - Each chamber rotated with respect to its neighbor by 60°

- Sense and field-shaping wires
 - Drift time + cathode data \rightarrow space point (x,y,z)
 - Aids in pattern recognition

Goal: measure space point with <200 µm resolution in each coordinate

Readout Electronics

- Significant number of channels
 - 10368 strips, 2304 anode wires
- ASICs → amplification of cathode/anode signals at chamber
 - Pulse-shaping with tail cancellation
 - 0.8 mV/fC gain for anode signals, 3.9 mV/fC gain for cathode signals
 - Anode signals discriminated (same chip, different function)
- Preamplifier daughter boards allow for easy maintenance
- Signal digitization
 - Anode wires: F1 TDCs (120 ps LSB)
 - Cathode strips: 125 MS/s Flash-ADCs

Effect of Magnetic Field

Lorentz force causes deflection of avalanche position along wire relative to

B=0 ("Lorentz Effect")

- Effect can be minimized with appropriate choice of gas mixture
- Amount of deflection along wire well-characterized by a plane for 40% Ar / 60% CO₂
- GARFIELD calculations using map for full magnetic field
 - Created table of deflection parameters

 describing planes as function of r and z (position along beam line)
 - Code interpolates deflection from table assuming ionization point at distance of closest approach to the wire

Correcting for the "Lorentz Effect"

- Simulated π^+ tracks incident on FDC packages ($\theta = 1^\circ 19^\circ$)
 - Lorentz effect on in simulation
 - Direction of deflection depends on side of wire π^+ passes through gas volume
 - No additional position smearing

- Fit track segments within single FDC package
- Interpolate correction from table obtained with Garfield

Small-scale prototype

- Readout for cathode strips: CAEN V792 charge-integrating ADCs
- Readout for sense wires: F1 TDC (pipeline)

Choice of Wire/Strip Angle

- Imaging the wires: at ±45°, measured 255 µm resolution
- •Tune angle between strips and wires
 - Trade off ability to associate wires and strips vs. position resolution along wire
 - ~35% position resolution improvement along wire possible relative to ±45°

Summary and Outlook

- Forward Drift Chambers track forward-going particles with Cathode Strip Chambers
 - Design goal $\sigma_{v} < 200 \mu m$ along wire achievable with $\pm 75^{\circ}$ planes
 - Deflection of avalanche position due to magnetic field can be modeled and corrected for in software
 - Construction of full-scale prototype underway...

