October 14,1992

CB NOTE: 215

Electromagnetic split-off |, beeener -

recognition with
Artificial Neural
Networl_(s

Thomas Degener

Ruhruniversitit Bochum

Institut fiir Experimentalphysik I

D-4630 Bochum

e-mail: thomas@tau.epl.rubr-uni-bochum.de

Artificlal Neural Networks are
used to identify fluctuations in
electromagnetic showers

introduction

The first step when analyzing data of the Crystal Barrel calorimeter is to run the

“BCTRAK’ part of the CB! off-line software package which groups neighboring crys-

tals, with an energy deposit, to form clusters. These clusters are searched for local max-
ima, the PEDs?, and it is assumed that every PED corresponds to a particle (in most
cases photons) that has hit the calorimeter at this Iocation. This assumption is correct in
many cases but some PEDs are just fluctuations in an electromagnetic shower: this is
called an electromagnetic split-off. Especially PEDs coming from low energy photons
are hard to distinguish from split-offs because a 4C kinematic fit will almost ever fit an
extra low energy photon.A lot of work has been done on this problem already and two
methods, SMART? and DOLBY C*, were developed. Section 2. gives a brief review on
SMART, for more details sez [1] . UsinE this methods, however, a model is introduced.,
A self organizing method like an ANN” as a model-free estimator is a totally different
approach to that problem. This paper introduces the basic principles and terminology of
ANN and describes how they were applied to the split-off problem.

1. CB: Crystal Barrel detector

2. PED: particle energy deposit

3. by Jiirgen Salk

4. by Nigel Hessey

5. ANN: Artificial Neural Network

10f20




SMART

SMART

This method consists of a linear cut in the two-dimensional space given by the following
quantities:

Energy of a cluster:..E, = ZE‘.
i

Invariant showermass: §,, = J (ZE fi 2‘(2135) ’

Fig.1 shows how the parameter space looks like for clusters with different number of
PEDs. '

FIGURE 1. Showermass vs. Energy (2r,m - Monte Carlo data)
», 300 5;35""““’5 vs Energy of cl';stjeoro
3 : 3
= 200 = 200
100
o g 0 - o) .
o 400 BOO 0 400 80D s} 400 8BGO
Kay MeV
2 PED cluster 2 PED Split Off
:‘:500 F " 3’.,300 C - EJQD g
3 o - " 2
2200 s | $200 | £
100 F 100 F
E & SO
0 4] ° 44 400  BCO
: Mey ) Mev
3 PEC good - 3 PED Spiit Off
", 300 - 300 T ~, 300
T f ; 13 F
3200 B =200 [
100 [ 100 F
_ ZARTAN T SRR
0 o 400 800 o 0 400 800 0 Q 400 800
: MeV May MeV
4 PED cluster 4 PED good 4 PED Split Off
The column in the middle shows the MC!-simulated showermass vs. energy for clusters
containing only real PEDs and in the right column those containing at least one split-
off. The lines correspond to the (linear) SMART cuts. Remember that in case of real data
it is not possible to distinguish a priori between a split-off and a real PED. In this case
1. Monte Carlo (simulation)

20f20

Electromagnetic split-off recognition with Artifictal Neural Networks




(

The Bayesian limit

one has a superposition of both sides shown in the left column. It is clearly visible that
there are regions containing split-offs and real PEDs.A total separation of this classes in
the space of cluster energy and showermass is therefore impossible.

The Bayesian limit

Perfect separation of two classes A and B is often impossible in principle no matter
what kind of properties of the classes ong investigates.Suppose there is only one prop-
erty y known characterizing the classes.Then the situation is like in Fig. 2. There are ele-
ments or in terms of physics events of both classes in the hatched area.In this area a
perfect separation is impossible, ' :

FIGURE 2.

One-dimensional class separatlon probiem The classes A(y) and B(y) aran't separable

The best separation of the two classes with respect to y is reached if a cut is set in the
middle of this region. This optimum of class separation is called the Bayesian limit.In
this very simple one dimensional example the Bayesian limit is just a linear cut repre-
sented by a step function. 0 is assigned to elements of class A and 1 to class B, But in
most cases however a one-dimensional linear cut is not sufficient. Take an additional
parameter x into account (Fig. 3).

FIGURE 3.

Two-dimensional class separation problem: A two dimensional step function (xy-cut)

. separates the classes

rrewreealeclavecnce

e

o

e
Y

-Electromagnetic split-off recognition with Artificial Neural Networks 3of20




The Bayeslan limit

A linear cut just with respect to x would lead to an even worse result, but a linear cut in
the xy-plane can separate the two classes perfectly! Again it can be represented as a step

- function where the argument is some linear combination of x and y. Fig. 4 shows on the

left side a three-dimensional lincar separable class separation problem and on the right
its projection onto the x;-x,-plane. The two classes A and B can be separated by

FIGURE 4.

Three-dimensional class separation problem

Projection
onto x1-x2 plane

- the grey plane, whereas the projection is no longer separable by a simple linear cut. The

aim of every cut one applies 1o data is to come as close as possible to the Bayesian limit,

‘Bear in mind that even finding the relevant properties of two classes A and B can be a
. difficult task, if it turns out that many properties contribute. Then it may be hopeless to

find a series of cuts just by visual inspection because of the high dimensionality of the
parameter space. Furthermore, a model is introduced by application of a series of
sequential arbitrary cuts and almost ever a huge amount of background events (bias)
remains and the Bayesian limit is missed by far. It would be best to find an estimator
that yields a probability for class membership from parameter space directly.

For the problem given in Fig, 3 an optimal solution can be accomplished by using a step
function with a two dimensional argument.Now I will discuss a similar but more com-
plicated example where the structure of the solution will turn out to be of the same
nature like an ANN. In Fig. 5.a) a two dimensional class separation problem is solved
by using a highly non linear cut. Another way to accomplish an optimal cut F is building
it up through an ensemble of step functions. Fig. 5.b) to Fig. 5.f) show how the cut func-
tion F is generated. A diagrammatic representation of F is given in Fig. 6. This looks
very much like a feed forward ANN, where the input variables x, and x, are fed into the
‘input nodes’, get multiplied by a weight along the arrows, summed up at the entrance
of a ‘hidden node’ and so on.The bias weights are just added. Adding bias weights gives
the possibility to perform cuts that do not necessarily go through the origin, For ANN
the originat step function is normally replaced by a sigmoidal function {section 4.1.2).
There are two reasons for doing so: The first is that some ‘leamning rules’ (section 4.1.6)
require a differentiable node function.The second reason is that for overlapping classes
(Fig. 2 on page 3),the sigmoidal node function can be used to approximate the probabil-
ity of an element belonging to one class or another.

4 0f 20

Electromagnetic split-off recognition with Artificial Neural Networks




The Bayeslan limit

FIGURE 5. _ Two-dimensional class separation problem: An optimal cut can be redormed by using a

highly non linear cut (a) or by building it up through an snsemble of linear cuts. The
indices are chosen to fit to Fig. 6

a) non linear cut b) U, = sgn (wy x; +wapXy +wag) C)U, = sgn (wy %, +wypx, +wy)
' F=U _ F=U+U,

U, 2
0
X 1 1
X 1 2 1 0 0 0
Us
2 B 0 B 0
3 3
- D :
1 2 14 0 0
d)Us = sgn (wgyx) +wsaka +wgg) €) F = U+ U, +Us+wg f) Final result
F=U+U,+ U, Wep = -2 Fe=sm(U+Uy+Us+wg)
FIGURE 6. Diagrammatic representation of the cut function F in Fig. 5

Node with signum
node function

& bias weight

Node with identity
noda function

Electromagnetic split-off recognition with Artificial Neural Networks Sof20




Artificial Neural Networks ANN

Artificial Neural Networks ANN

4.1

4141

This chapter introduces the termmology of ANN (without rying to be compleie). The
network mostly used in HEP! is the Feed Forward Back Propagation ANNZ. Other net-
work structures are the linear and non ]mear associative memory, the Perceptron, the
Hopfield ANN and the Boltzmann machme The main disadvantages of ANN to algo-
rithmic methods are:
- It is hard to understand how the solution of a problem was found.
- Sometimes ANN have an unpredictable behavior because of their non lnear nature
- ANN give an approximation instead of an exact solution,
On the other hand there are many advantages:

- ANN are self-organizing and allow the selection of classes without the application of
sequential cuts.

"= ANN act as a model free estimator {no previous knowledge has to be used).

- Learning by examples instead of programing an already known solution.
- ability to generalize to unknown inputs.
- ANN are suitable for massive parallel processing.

Components of an ANN
Two example graphs of ANNs are shown in Fig. 7.

Set of processing units

"~ An ANN comprises a set of processing units called nodes. Every node can have an iﬁput

and/or an output. There are three different kinds of nodes in a network;

Input node: Receives input only from external sources

Hidden node: Input and output only to/from other nodes in the network

Qutput node: Gives its output to external targets

Ofiten one arranges a netwark in layers such that no node of a layer receives input or

sends its output to a node of its own layer.In this case one has, depending on the nature
- "of the nodes, input-, hidden- and output layers.

If the signal flow is straight through the networki.e. from input- to hidden- to output

layer then this is called a Feed Forward Neural Network.If the network contains loops

then this is called a Feedback structure.

1. HEP: High Energy Physics
2. for a summary of recent ANN applications in HEP see {2}
3. they all differ in some of the aspects given in section 4.1

60f 20

Electromagnstic split-off recognition with Artificial Neural Networks

(o




Artificial Neural Networks ANN

FIGURE 7.

Examptes for the layout of Neural networks

Node with sigmoidal
node function

- 5ias weight

Node with identity
node function

A feed forward ANN with one hidden layer A more general ANN with

feedback.

4.1.2 Node function

4.1.3

Also called activation function in literature,

This function defines how to calculate the output of a node from its inputs. There are
excitatory or inhibitory connections in a network. This only makes sense if the node
functions are restricted to monotonous node functions,i.e, uniform changes in the input
of a node causes uniform changes in the output of it. Examples for node functions are:

1 for x>0
Signum function: sgn (x} = { (EQ 1)

o for xX<0

. , 1
Sigmoidal function: f(x) = s {EQ2)
1+e€
or Fx) = % (1 + tanh (%)) (EQ 3)
Network topology

The topology of a network is defined by the set of connection weights wj;.. The weights
define how strong a node is coupled to another one.A possible range of values is:

Representations of the network topology are:

Electromagnetic split-off recognition with Artificial Neural Networks 7of20




Artificial Neural Networks ANN

. Connection matrix %/

The elements of the matrix are the weights.In a program it can be represented as a
two-dimensional array.

Interlinked list

Dynamical storing of actually existing weights.This is realized by complex pointer
structures.For large networks this is absolutely necessary which is one of the reasons
why a programming language like C is widely used for encoding neural networks, as
pointers are not available in e.g. FORTRAN.

4.1.4 Neiwork input function

The input function defines how to calculate from the output o; of a previous node and
" from the connection weighis w;; the input a; to node 1.0ften used input functions are:

Sum of weighted outputs:
Input to node j: a; = ZW,-joi {EQ 4)
or ‘
Input to node jia; = Zw‘-jo‘- + Wy (EQ 5)
Product of weighted outputs: l
Input to node j: a; = Hwijo‘- (EQ &)
. {
Maximum of weighted outputs:
Input to node j:aj = max; (w‘-_,o B (EQ7)
Minimum of weighted outputs:
Input 1o nodej:a}- = min; (w,-jo‘.) (EQ 8)

4,15 Network transfer function
One distinguishes:

1.

‘Work phase (static ANN)
The network does not change anymore 1.¢. all weights are fixed. The transfer function
maps an input vector & = (a,, 45, ...4;) from an external source onto an

output vector & = (0, 0y ...0)) toan external target,i.e.:

transfer function F: & = F (4)

. Training phase (dynamic ANN)

80f20

Eleciromagnetic split-off recognition with Artificlal Neural Networks




Artificial Neura} Networks ANN

416

4.1.7

4.1.8

In this case the output of the network depends on previous input vectors as welli.c.:

transfer function F: 6 = F (& (1,), & (1)), (1)) (EQ 9)

where the t; ‘s denote the numbers of iteration.

Learning rule

During the training phase a set of learning examples (training set), i.e. external input
. vectors, is used to change the connection weights according to a learning algorithm. The

aim is to change the transfer function in a way such that the training set is adapted.i.e. to
a specific input vector of the training set the networks gives the desired output vector, If
the correct target vectors to their corresponding input vectors of the training set are
known (or a criterion exists that decides wether the result is desired or not) one can inte-
grate this knowledge into the learning rule. This is called supervised learning. If no
assumption on the network’s output is used (for example Hebb's rule), then this is called
unsupervised Jeaming.In this case one hopes that the networks organize themselves
according to the structure of the input data. This structure can be clusters, principal
components, prototypes, and/or other typical features.A very good working learning
rule for supervised learning, which is used here, is the Backpropagation algorithm (see
section 5. on page 10). Some other learning rules are: Delta-rule, Metropolis algorithm,
Vector quantization [3] . Principally the leamning should stop when the weights do not
change anymore or only very little. Then one says that the network has converged!.

Convergencs test

A way to test for convergence during learning is to store the weights after some iteration
k., i.e. present k times an input vector to the network, calculate an output vector and
change the weights according to the learning rule. Then do j extra iterations and store
the weights for every iteration. If for all iterations the weight change is smaller than a
small number ¢, then go back to iteration k and ‘freeze’ the network otherwise continue
learning.

The convergence test used here is simpler and less CPU consuming and is used in case
of supervised learning: Stop learning and save the weights after k iterations. Then
present another j patterns (j input vectors and their target vectors) to the network and
calculate an error (section 4.1.8) for every corresponding output vector_without chang-
ing the weights meanwhile. If for all j patterns these errors are smaller than a value ¢
(called the gror bound), then ‘freeze’ the network. Otherwise continue learning at itera-
tion k,

Error function

In case of supervised learning,e.g. the target vectors ¢ are known, an error function has
to be defined that tells how good the network performs at a specific time. This can be for
example a sum of squared, absolute errors:

_Ix 2
E= -2.;(:,.—0,-) (EQ 10)

1. This does not mean exact mathematical convergence

Electromagnetic split-off recognition with Artificial Neural Networks 9oi20




The Backpropagation algorithm

4.1.9

But other error functions are possible as well. If the correct target vectors are unknown
E can be replaced by a function that gives a measure of quality for the output of the net-
work. For unsupervised leaming no error function is needed.

Performance

Once the network has converged one likes to know how good the network does in sepa-
rating classes. For a performance test of the network a different data set, that is
‘unknown’ to the network, has to be used. Not surprisingly the network usually does its
task much better on the training set than on a unknown data set. If the number of extra
iterations for the convergence test equals the number of training examples, then it is
obvious that the error is smaller than the error bound (see section 4.1.7) for 1] outputs
and all patterns. In this case the network has learned the training set by heart! But this
must not be the best solution of the problem because especially when the training set is
small, the network starts to pick up the noise of the training set as well. The use of a
‘unknown’ data set for a performance test shows how good the network generalizes.

The Backpropagation algorithm

BP! uses the derivative of the node function for gradient descent, therefore the node
function must be differentiable. Let the network input function be a weighted sum input

* plus a bias weight, then the input a; to the jth node is

aj = Wjo + ZWJ-,-O‘-
: i

{EQ 11}

Where 0; is the output of a previous node.This is passed through the node function f;10
produce the output of the jth node

0; = f;.(aj) (EQ12)

The change in weight is taken to be proportional to the contribution of that weight on
the total error E (see equation 10 on page 9).The constant of proportionality o. is called

the Jearning rate?

(EQ13)

By the chain rule this gives

1. BP: Back Propagation algorithm

2. equation 13 is known as the Delta-rule when it is only applied to the weigi:.  onnecting to the
output layer. BP is a generalization of the Delta-ruie.

10 0of 20

Electromagnetic split-off recognition with Artificial Neurai Networks




The Backpropagation algorithm

(EQ14)
oF
'A‘Wj‘v = —am
 oE O
aajawj_-

where the derivative of E with respect to a; has been replaced by A;.Using the chain rule

again gives (EQ15)
A = oF
1"
" %o,
%
= a_ajf (aj)

Suppose the error function E has been defined as a sum of squared errors and the j&
node is an output node then the change in weight for this node is

CAwy, = —0(t—0)) - f(a)o; (EQ 16)
+ For the sigmoidal function given in equation 2 on page 7 this can be written more
explicitly as

Awy; = —0.(t;—0;) - 0;- f(a) - (1-f(a)) (EQ17)-

If the j*" node is a hidden node and the indices from k to 1 denote nodes to which the j™
~ node is connected then the weight change is given by

L . OE
Awy; = —00, () %,

!
oE oa,,
Tl L,

i

!
~oo;-f'(a) - 2 AW | |
m=k {(EQ 19)

Electromagnetic split-off racognition with Artificlal Neural Networks 110f20




Networks for split-off recognition

6.

According to this change in weights the Backpropagation algorithm works as follows:

LInitialize the weights wy; with random values.
2.Repeat until w;; and wy; have settled:
2.1 .Pick pattern from the training set (input and target vector).
2.2 Propagate the input vector through the network to get an output vector.
2.3.Calculate an error and update the weights according to

wi(t+1) = w; (1) +Aw;, (1)

where Aw;; is given by the above equations depending on the node
and t denotes the number of the iteration.

Networks for split-off recognition

6.1

This chapter presents the first resulting ANN for split-off recognition. The training data
set used were MC generated 3m, data. For performance checks data were taken from a
2rgn MC and from another 3ng MC (different from the training set). All networks have
Jjust one output node with the sigmoidal node function given in section 4.1.2. The output
of the networks is always in the range between 0 and 1, being a measure for the probabil-
ity of a PED to be a real photon. In the training set 0 was assigned to a cluster containing
at least one split-off and 1 to a cluster containing real PEDs only.

“First ANN for clusters with two PEDs

The network shown in Fig. 8 has been designed to check wether there is a split-off clas-

 sifier that is as good as the one found by SMART when using the same properties. Its

input x is just a simple function of the invariant showermass and the energy of a cluster.

S
Input for ANN: x =3 (E—"'-o,xs) (EQ 19)
ci

The reason for this choice is to scale the input data to small values around zero to make
use of the bigger gradient of the sigmoidal node function around zero.This causes larger
weight changes at the beginning and usually faster convergence.

120f 20

Electromagnatic split-off recognition with Artificial Neural Networks




Networks for split-off recognition

FIGURE B.

First network for 2 PED cluster and its input data

Geod

Node with sigmoidal Node with identit

y ; ;
node function : node function ®  bias weight

Fig. 8 shows the layout of the network with its weights which tumed out when the net-
work fulfilled the convergence criterion.This required to pass 90 patterns (input and tar-
get vectors from a training set that consists of 2000 ‘real’ and 2000 split-off cluster)
with an error bound of 0.49 (see section 4.1.7 on page 9).This error bound seems to be

‘large, but remember that there are only two different target values (0 and 1) in the train-

ing set.Of course an error bound of more or equal 0.5 would have been a stupid choice
because it is obvious that the network would have converged to some weights such that
the output value is always around 0.5 and no class separation would have been gained at
all! The training was stopped every 10 iterations (i.e. after 10 training examples) to test
for convergence. It fulfilled the convergence criterion very quickly after 950 iteration-
s.The training used less than a second of CPU time on an IBM RS/6000-320-h worksta-

- tion.After training the network the ANN simulation was recompiled with fixed weights.

Then the resulting ANN C-function was put into the CB- off-line software to check its
performance on a reference data set.

Electromagnetic split-off recognition with Artificlal Neural Networks 13 0f 20




Networks for split-off recognition

FIGURE 9.

Performance of first network for 2 PED Cluster

92/00/30 09,17
Networks vs Smart

MC morenm

3500 [+

Mo. of Cluster

2500 |+

2000 |+

000

o
0 — ot N Lt 1 u
o 0.2 0.4 0.6 0.8 1

Network cut

2 PED Cluster

The split-off ‘probability’ of a cluster is found in a single procedure call. The resuit is
shown in Fig, 9. The diagram may be interpreted in the following way: The x-axis gives
the cut which was applied to the value of the output node i.c. the value which is assumed
to be the border between clusters containing a split-off and clusters without split-off
PEDs. If the networks output is smaller than this value the cluster is supposed to be a
cluster containing a split-off otherwise a cluster without split-off’s. On the y-axis is the
number of clusters that survive this cut, i.e. all clusters with a smaller value were
rejected. There are two curves for clusters with split-offs (lower) and without split-offs
(upper) respectively. The upper curve represents the efficiency of the cut, the lower
curve the background that remains in the data. For example at x=0.4 about 5% of good
clusters are cut and about 15% split-offs remain. If the cut value is O or less it is clear
that no cluster is rejected at all, because the networks output is always greater than 0, If
the cut value is bigger than 0.3 the network starts to reject clusters containing split-off

~ PEDs. Further increase leads to less split-offs in the remaining dataset but unfortunately

the network starts to reject good clusters as well. At 0.47 the network has about the same
performance like the upper SMART-cut (vertical line), nearly afl split-offs are recog--
nized but 32% of the good clusters are identified wrongly as a split-off. Fig. 9 shows that
using an ANN for cutting must not result in a fixed cut that a user applies. The user can
use it like a smooth regulator instead. If absolute purity is required then switch to 0.6
with the drawback of loosing half of the good clusters in this case. This principle is inte-
grated in SMART as well by using two cuts an upper and a lower one. Every point below
the lower SMART cut is definitely a split-off Points between the two cuts are referred to
be ambiguous. The intention for this is to ‘repair’ clusters which definitely contain a
split-off. The use of an ANN is even more versatile! The purity of the accepted event
sample can be adjusted by only gne cut to the value of the output node and the user is
free to optimize this value for his special needs!

14 0f 20

Eleciromagnetic split-off recognition with Artificial Neural Networks




Networks for spilit-off recognition

6.2 Seconhd ANN for clusters with two PEDs

In order to improve the network’s performance more parameters (input nodes) and 7

hidden nodes were added:
g With the following properties:
(3 (E—; ~0,16) ) E,pp, : PED-central energy
1) (ZNme -1 Epgp, : PEDy-central energy
x, 35
f 1\, (EPEDI —0,5) Qppp, :angle to next PED of PED1
X, Eq
x5 4 (Qppp, =~ 0,93) Qprp, © angle o next PED of PED2
\xg/ 5 Epepy —0z
E,, ’ Nzt :Number of crystals in the cluster

\4 (apgpz"' 0:94) /

This time the network was able to pass a stricter convergence criterion, that was to pass
140 patterns with an error bound of 0.49 (see section 4.1.7 on page 9). And in fact the
performance is somewhat better than for the network with only one input.Fig. 10 shows
the result in a diagram of the same type as Fig. 9 for 3mg MC data. For a cut value of 0.7
the network has about the same performance like the upper SMART-cut. But a cut value
of 0.22 is a better choice because nearly as many clusters containing split-off PEDs are
rejected but a lot more of good clusters are kept.

Electromagnetic split-off recognition with Artificial Neural Networks 150f20




Summary and Outiook

FIGURE 10.

Performance of second network for 2 PED cluster

92/09/28 12.51
Networks vs Smart

DREIPH). TUPL
s
12000 ¥ Lm;._

ﬁ—-____________-_
‘h-.%.
i Ry
10000

BOOO H-
b

MC o, m,

No. of Cluater

8000

4000 [T . [ Netwerk = SUART

2000 [t
- é‘

'

e 1100 1d
o b '-"-1-5'1-!--—-.... L 1| SWTgn SpR-ON AR

c 0.2 0.4 0.6 T 0.8 1
Nelwork cut

2 PED Cluster

7. Summary and Outlook

The results obtained with the networks described above look very promising It is possi-
ble to apply the ANN technique to the split-off problem. The performance, i.e. the qual-
ity of the classifier, turned out to be at least as good as obtained with other methods. The
major advantages up to now are the greater flexibility and ease for the user when apply-
ing a cut.There has been no check on systematic errors yet, but for the first network the
cut is basically the same as the SMART-cut. Therefore the systematic errors are the same
as well. Once a good working network structure is found it is easy to suit the network to
slightly different sitvations,e.g. when using ‘in flight’ data instead of data *at rest’ one
just has to load other weights generated with a “in fiight’ data training set.

At the moment networks are under investigation that work on the basis of a matrix of
energy deposits in a cluster. Such a network represents a really model-free estimator, as
no correlation (= knowledge) is put into the input layer. The same network might work
for other purposes as well, e.g. hadronic split-offs, identifying merged o, etc.

For hadronic split-offs the major problem will be that there does not exist a satisfying
Monte Carlo simulation for hadronic showers.A possibility might be to use real data for
training and a suitable measure of quality for the output of the network (section 4.1.8 on
page 9).

A further advantage would be the possibility of down-loading the weight mairix into an
ANN hardware trigger box for on-line applications.

16 of 20

- Electromagnetic spiit-off recognition with Artificial Neural Networks




Appendix A

Appendix A. The Aspirin/Migraines software tool

Although it is quite easy to develop the routines for a simple ANN simulation, a net-
work compiler named Aspirin was used to create the above networks. Aspirin is an
ANN parser that uses a declarative language to describe feed forward neural networks
to a certain complexity.It generates C-code that can be included into an application! or
into a already made computer program that simulates that network. The main reason for
using such a parser is that many different network structures can be generated and tested
in a short time without struggling with complicated pointer structures in C, because the
actual code of the network can be treated as a black box. Migraines is a tool to move
through such a network interactively,i.e. one can have a Iook at the weights at any
desired time (iteration) and dump them 1 a file or any other feature of the network.
Aspirin is available free of charge via anonymous ftp:

ftp.cognet.ucla.edu Russelg Lei h(t:on
in the directory: : The ‘orporation
e alexis v 7525 Colshire Dr.
in the file: McLean, Va. 22102-3481
amé.tar.Z. INTERNET: russ@dash.mitre. org
leighton@mitre.org

The following list gives some hints how to create, train and test a network like in
section 6. with Aspirin, for a detailed description of Aspirin/Migraines see the User’s
manual.
1. Network description

Create a network description file called <MyNet>.aspirin. For the network in

section 6.2 this looks like:
D[eﬁneBlackBox splitoffnet

OutputLayer-> splitOff “All words in bold type

InputSize-> 6 are reserved by the

Components-> _ Aspirin language.

( PdpNode splitOff o _ PdpNode: Node with
{ sigmoidal activation
InputsFrom-> hidden and $INPUTS function

}
P? pNode hidden [8)
} InputsFrom-> $SINPUTS

There are many options, for example:
A black box can have arbitrarily many layers (Components). A layer can be two
dimensional. Three different node functions (PdpNode = default) and a user defined

1. for example the CB off-line sofiware

Electromagnaetic split-off recognition with Artificial Neural Networks 170of 20




Appendix A

node are supported.The example network is fully connected, but Aspirin supports
tessellation as well, .. a node can receive input from a rectangular area of a previous
layer.
2. The bpmake utility

To create a complete ANN simulation execute the shell script bpmake with no argu-
.ments. Then the Aspirin parser generates C code, which is compiled and linked to a
standard simulation and the Migraines interface. The name of the executable simula-
tion will be <MyNet> see step 1.)

3. Data file and data format file

Create a data format file <name>.df and at least one file that contains the actual data.
- The data format file will tell the simulation what kind of data is used (¢.g. ASCII,
binary...), the order of input and target pattern and the file where to find them. Fur-
thermore you can cause the data to be rescaled, normalized or a filter function to be
applied to etc....When starting the simulation the whole data file(s) is read inio mem-
ory.
Exampie for.a data format file;

ReadFile(splitoff.data Ascii)
ReadFile(good.data Ascii)

This means that there are two data files both containing data in ASCII format
in the order: input target input target...

When the simulation starts a pattern (input and target) is taken from the first
file then from the second and so on.

4. Training
" Train the network by typing:

<MyNet> -] -s <num1> -t <num2 num3 num4> -d <name.df>-a <o -1 <num3>

This executes <Mynet> with the following opiions:

-1:leam :

-s <num 1> : save the weights every <num> iterations (1o a file Network.save)
- -t <num2 num3 num4:> : test for convergence every <num2> iterations with the

criterion: must pass <num3> iterations with <num4> error bound
-d : data format file <name>.df -

-a : with learning rate <a>
-I : truncate leaming after <num5: iterations

When the networks fulfills the convergence criterion the simulation terminates and
the state of the network is dumped to a file Network.Finished

- 5. Performance check

One possibility is to create another (‘unknown’) data file and the corresponding data
format file and do the test by typing:

<MyNet> <name.Finished> -d <pame.df> -f <num1> -p

This executes <Mynet> with the following options:

<name.Finished> : load weights from a dump fite into the network

-d : data format file <name.df>

-f <num 1> : (forward) 1ake <num 1> input and output pattern from the data file and
propagate them just forward through the network (no leaming!).

-p : print the output and arget values 10 the standard output

Adding *> filename’ will redirect the output of the simulation 1o a file

18 of 20 ) Electromagnetic split-off recognition with Artiticlal Neural Networks




Appendix A

Another possibility is to link the network to the program that generates the data’
without the Migraines interface and with fixed? weights.For this purpose add the
keyword Static-> in the network description file <name>.aspirin.Then compile the
network step by step:

First type 7
aspirin <name>.aspirin <filename> -¢ backprop
cc -fsingle -I<include.dir> -g <-qsource> -¢ <filename.c>

The first command generates a file <filename>.c and a file <filename>.h which con-
tains C-code.Then the <filename.c> file is given to the C-compiler to produce exe-
cutable code in a file <filename> 0 that will be linked to the application. When the
<filename>.h file is included in the source code then a number of network- and black
box? control functions are available to initialize the network,  set and get the input
and output, 10 propagate data through it ete...

and then

1. In this case the CB off-line software.

Cne could have done that for training es well without adding Static->

2. i.e. once the weights are loaded into the simulation they are fixed

3. A network can consist of several black boxes (e.g. a network of networks)

Electromagnetic split-off recognition with Artificial Neural Networks 190f 20




References

f1] J. Salk, split-off recognition in pure neutral events, CB note 182,Bochum
1991

[2] B. Denby, Tutorial on Neural Network applications in high energy physncs
Fermi National Accelerator Laboratory 1992

[3] C. Peterson, T. Rgnvaldsson, An Introduction to Artificial Neural Networks,
Proceedings, 1991 CERN School of Computing, CERN May 1992

20 of 20 Electromagnetic split-off recognition with Artificial Neural Networks




