
GlueX Collaboration Meeting

12GeV Trigger Electronics

2-4 February 2011

R. Chris Cuevas

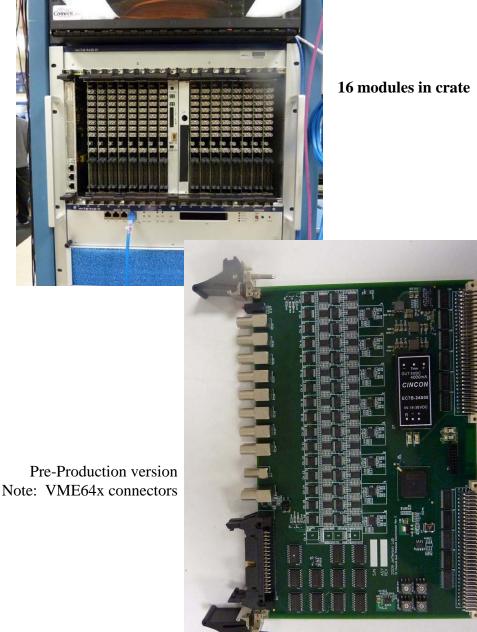
- 1. Hardware Design Status Updates
 - The regular list of acronyms SD; TI-D; SSP; CTP; GTP; TS
 - Trigger System Fiber Optics
 - Preparation for full crate testing
- 2. 1st Article VXS Crate Testing
- 3. Summary

- <u>Flash</u> <u>ADC</u> 250Msps (FADC250)
 - \checkmark This is where the trigger 'data' begins
 - ✓ ** Version 2 design complete See Fernando's update **
 - ✓ Many tests have been completed!
 - ✓ Significant layout revision with consolidation of firmware and FPGA
- <u>C</u>rate <u>Trigger</u> Processor (CTP)
 - ✓ ** 2 units tested in 2009 ** 2 more sent for assembly Sept-2010
 - ✓ 2 new CTPs assembled and received. New modules have different FPGA and support higher Gigabit speed (5Gbps)
 - ✓ Initial CTP used for verification of new WIENER VXS backplane
 - \checkmark New boards will be thoroughly tested and used in full crate test plan
 - ✓ Collects trigger data (SUM) from 16 FADC250 modules within one crate
 - ✓ Transports trigger data over fiber to Global Trigger crate
 - 10Gbps capability (8Gbps successfully tested)

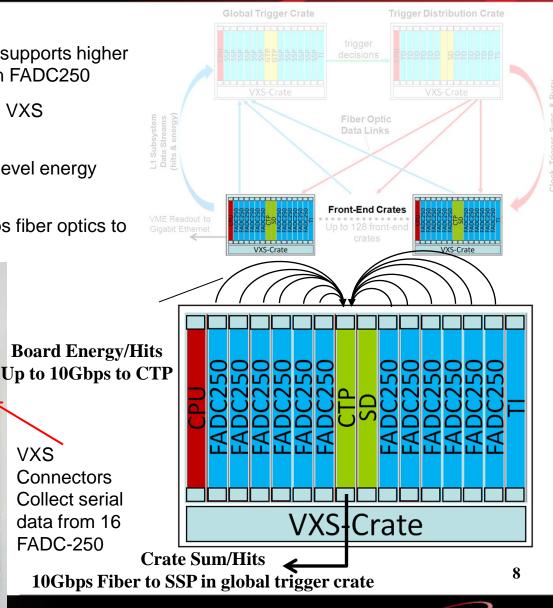
- <u>Signal</u> <u>D</u>istribution (SD)
 - ✓ 2 prototypes tested in 2009 ** Rev-1 ready to manufacturer Oct-2010 **
 - Precision low jitter fan-out of ADC clock, trigger and synch signals over VXS backplane to FADC250 modules
 - ✓ Minor revisions to include clock jitter attenuation PLL
 - ✓ 2 Rev-1 boards have been assembled and received
 - ✓ A few power supply issues have been resolved, and updates to firmware have been completed to support jitter attenuation PLLs
 - ✓ I^2C communication with latest TI-D has been tested
 - \checkmark We have components for at least six more units
 - ✓ Two boards will be used for full crate testing before ordering preproduction quantities. (June 2011)

- <u>Trigger</u> Interface <u>Trigger</u> Distribution (TI TD)
 - ✓ FY10 Goals achieved.
 - ✓ FY11 test goals are ahead of schedule and firmware has been completed.
 - Design changes have been recorded and peripheral modules for TI-D have been completed. (i.e. Fan-out board for CAEN V1290 TDC)
 - ✓ CODA library has been updated for latest TI-D revision.
 - ✓ After full crate testing, pre-production quantities will be ordered.
 - ✓ Direct link to Trigger Supervisor crate
 - \checkmark Distributes precision clock, triggers, and sync to crate SD
 - ✓ Manages crate triggers and ReadOut Controller events

- <u>Sub</u>System <u>Processor</u> (SSP)
 - ✓ Prototype received and is undergoing detailed functional testing!!
 - ✓ FY10 goals achieved and FY11 test activities will continue
 - ✓ Will use SSP during full crate testing in the spring
 - ✓ Collects trigger data from up to 8 front end crates. (2048 channels!)
 - ✓ Trigger data received on front panel with fiber transceivers
 - ✓ 10Gbps input capability (4 lanes @3.125Gbps*(8/10b))
 - ✓ 10Gpbs output stream to GTP
- <u>G</u>lobal <u>Trigger</u> Processor (GTP) (FY10-11)
 - ✓ Schematic work is back on schedule (Scott Kaneta)
 - ✓ FY11 goal is to build initial prototype and test with SSP and TI-D
 - \checkmark Revisions to initial specification has been updated and finalized
 - ✓ Interface requirements to SSP and TS have been finalized
 - Large scale FPGA has been selected and Xilinx Aurora protocol has been tested with Altera FPGA


- <u>Trigger Supervisor (TS)</u> (FY11-12)
 - ✓ New board format VXS Payload module
 - \checkmark Distributes precision clock, triggers, and sync to crate TI-TD
 - ✓ Manages crate triggers and ReadOut Controller events
 - ✓ Direct cable link to Global Trigger Processor (32 trigger bits)
 - ✓ Specification has been updated to match GTP output
 - Schematic and board layout activities can begin after full DAQ crate testing is complete and pre-production orders for TI-D and other boards have been completed.

Ben Raydo


Discriminator Status (Not truly trigger system hardware, but very nice new development)

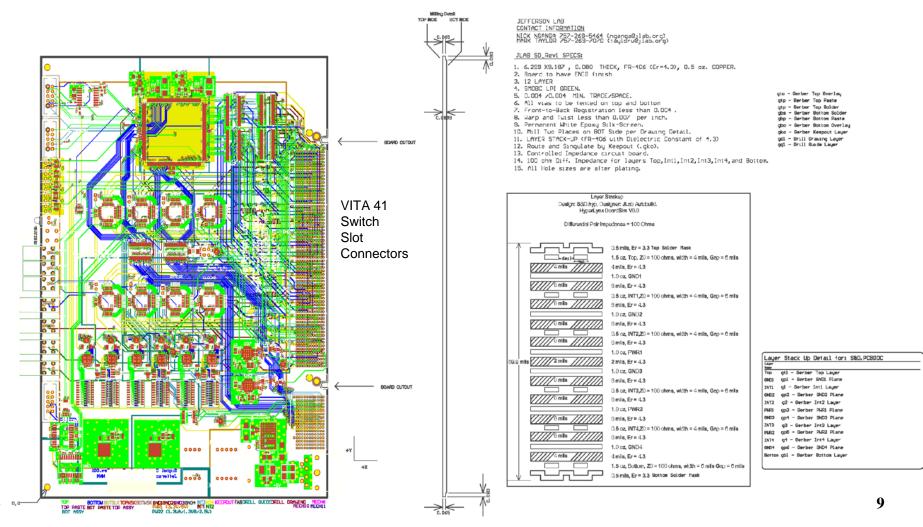
- 16 Pre-Production modules have been assembled and received
- Significantly cheaper than V895: -cost < \$2,000
- Provides several features not found on V895: -32bit scalers on all channels at both thresholds
 - -Calibrated pulse widths: from 8 to 40ns
 -Trimmed input offset (<2mV error)
 -Second 34pin output connector is fully programmable.
 - -Able to perform logic based on all channels at both thresholds
- Final revision has VME64x J1-J2 connector
- Full test stand developed by Pedro Toledo(USM Chile) will be re-used
- Hall Groups will test with detectors

Crate Trigger Processor

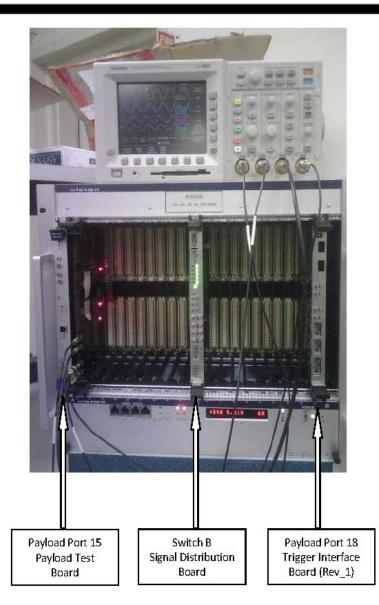
- 4 Fully assembled units are in the lab!!
- 2 newest units include VirtexV FX70T that supports higher serial speeds. (5Gbps) Matches FX70T on FADC250
- Initial CTP unit used to verify new WIENER VXS backplane map
- Crate Trigger Processor computes a crate-level energy sum (or hit pattern)
- Computed crate-level value sent via 10Gbps fiber optics to Global Trigger Crate (32bits every 4ns)

Jefferson Lab

CTP


Prototype:

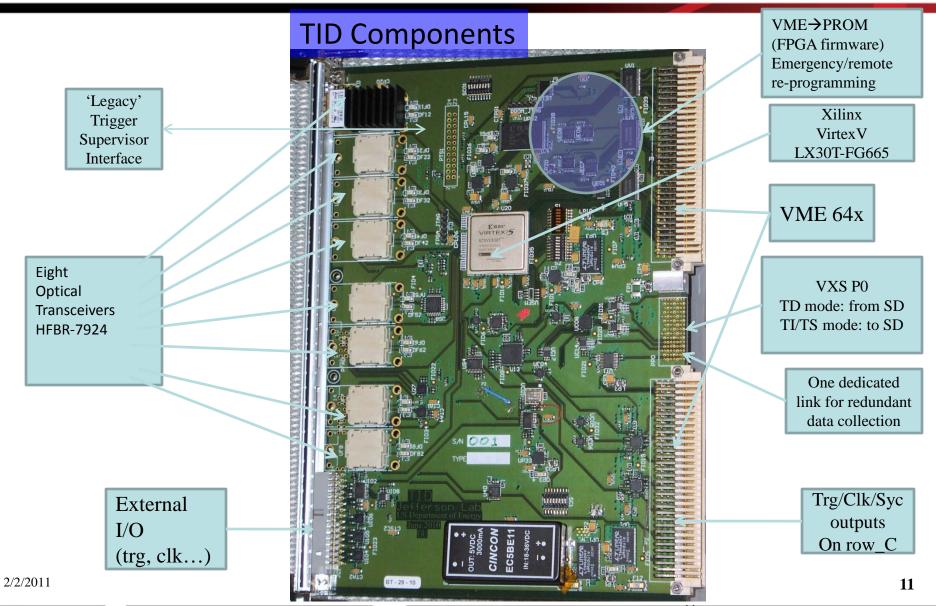
Fiber Optics Transceiver


Crate Level – Signal Distribution (SD) -Rev 1

N. Nganga 10-Oct-2010

Two boards fully assembled and almost completely tested

Crate Level – Signal Distribution (SD) -Rev 1



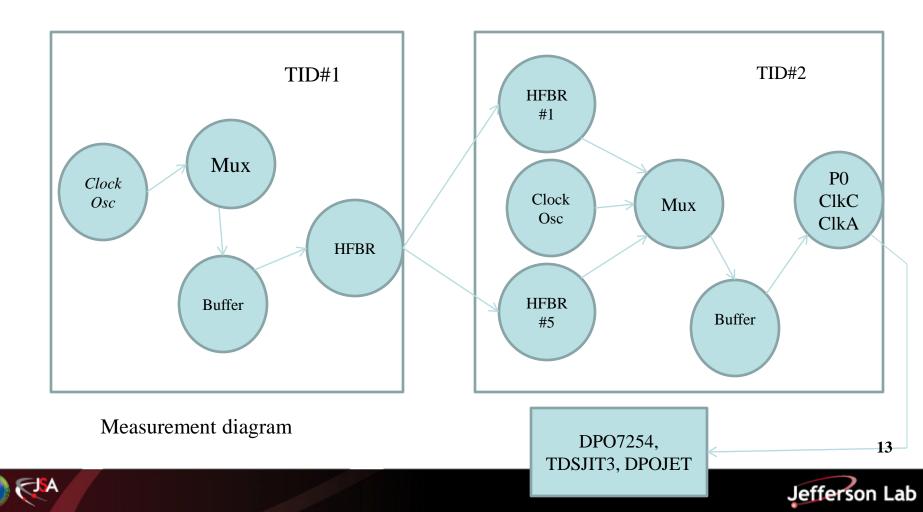
- New power regulation scheme tested
- New (final) front panel complete
- Token In/Out tested
- Latest I^2C firmware has been tested with TI-D. Supports the control of the on board PLLs from the FPGA via SPI. Users can select Jitter Attenuation mode (PLL) or non-PLL mode.
- All common signals from TI (i.e. Busy, Sync, Trig1, Trig2 have been tested.
- Final results from PLL jitter attenuation tests will be completed before 15-Feb-2011

Trigger Interface - Distribution

Jefferson Lab

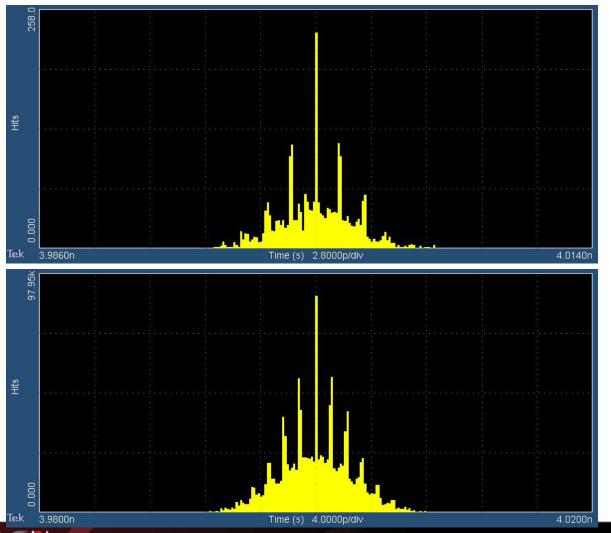
W. Gu DAQ Group

What is tested:


- \checkmark The power distribution for the board is tested and working.
- ✓ All the discrete components (drivers, buffers, receivers etc) are tested, and working
- \checkmark The on-board clock distribution network is working.
- ✓ The on-board trigger distribution network is working.
- ✓ Serialized trigger data re-sampling (ADN2805).
- ✓ FPGA firmware:
 - VME to I2C engine;
 - VME data readout;
 - VME remote firmware loading;
 - Customized the firmware for TI, TD, mini-TS mode
 - Initial Jitter analysis results for 250MHz clock are low <u>~2ps</u>

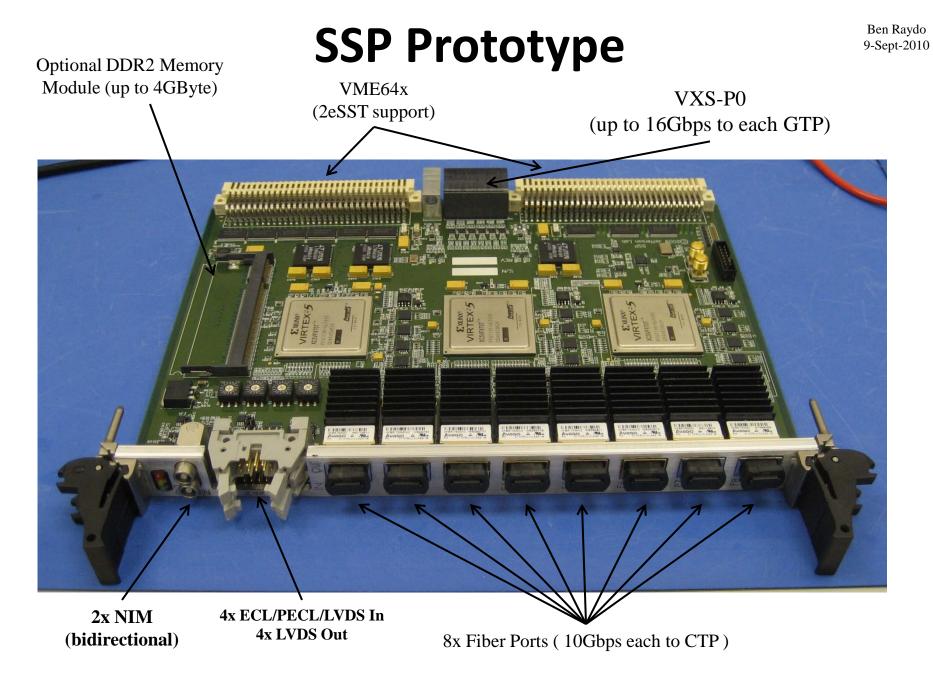
TI-TD Testing

W. Gu DAQ Group

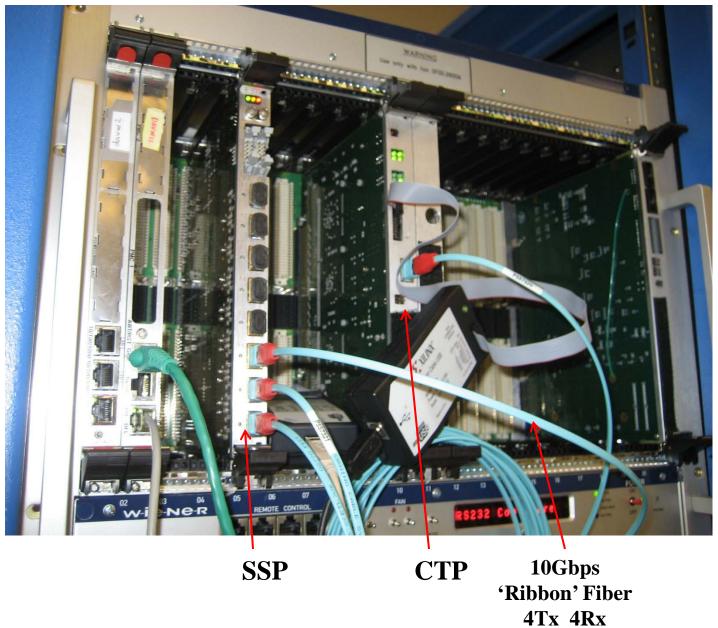

The scope used: Tek7254, probe: TDS3500 differential probe Scope setting: 40GS/sec → 25 Ps/Pt, 2.5 GHz limited Measuring software: TDSJIT3 ADVANCED, 400K samples (auto set) or DPOJET ESSENTIAL, 50M samples. Measured on TID#2, TID#1 may be used as clock source

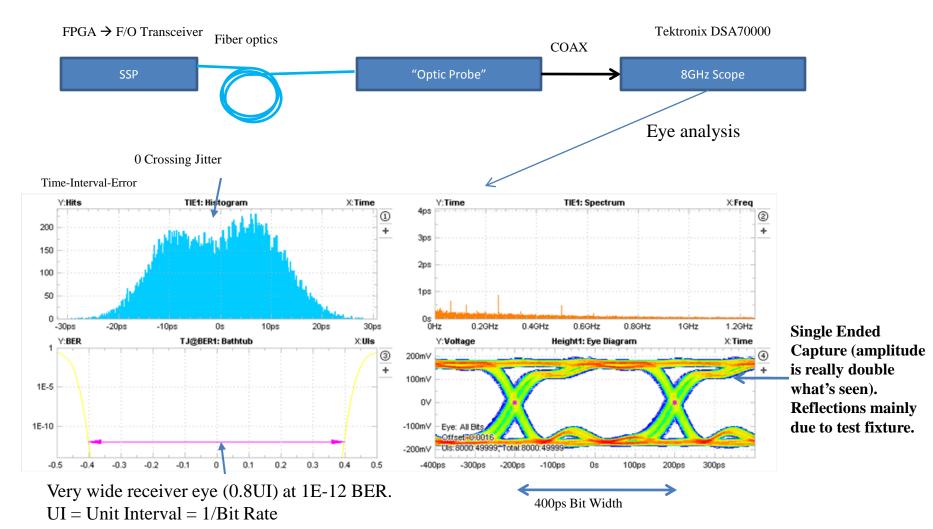
TI-TD Testing

W. Gu DAQ Group


Assuming that the oscillator has negligible jitters, the TID to P0 distribution has a jitter of less than 2ps, and the two HFBR_7924/34 distribution has a jitter of less than 2ps too (sqrt(2.65*2.65-1.88*1.88)=1.87ps).

TID#2 on-board oscillator as clock source, the ClkC jitter measured: 1.88ps


TID#2, HFBR#5 as clock source, the ClkC jitter measured: 2.65ps

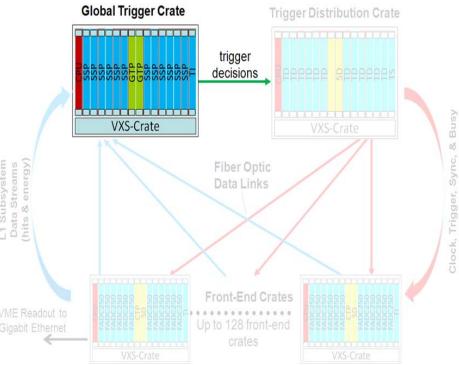


SSP Working with CTP

Ben Raydo 9-Sept-2010

SSP 2.5Gbps Fiber Eye (1 of 32 shown)

Gigabit transceivers & optics are performing much better than device specifications – further testing will reveal accurate bit-error rate estimates.

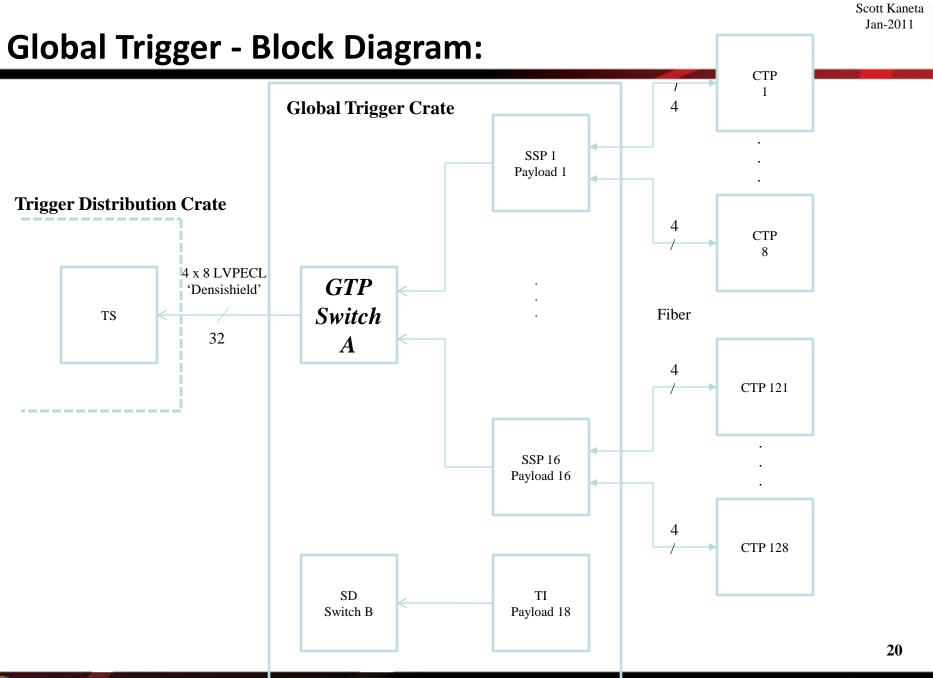

Ben Raydo

SSP Summary

- BGA assembly issues have been resolved.
- SSP will be used for two DAQ crate testing in spring.
- Link quality tests remain between fibers and FPGAs, as well as FPGA and FPGA, but is looking very good so far.
- DDR2 Memory testing needs to be completed
- Testing with GTP will have to wait for GTP prototype. (June '11)
- SSP Project ahead of schedule!

Global Trigger Processor: (GTP)

- Global Trigger Processor (GTP) receives al subsystem Level 1 data streams from SSP
- Trigger decisions made in GTP and distributed to all crates via the Trigger Distribution (TD) modules in the Trigger Supervisor Crate
- Schematics and component selection activities are progressing well
- Preliminary component placement and layout strategies have been completed
- Xilinx's 'Aurora' Gigabit protocol has been ported to Altera device successfully

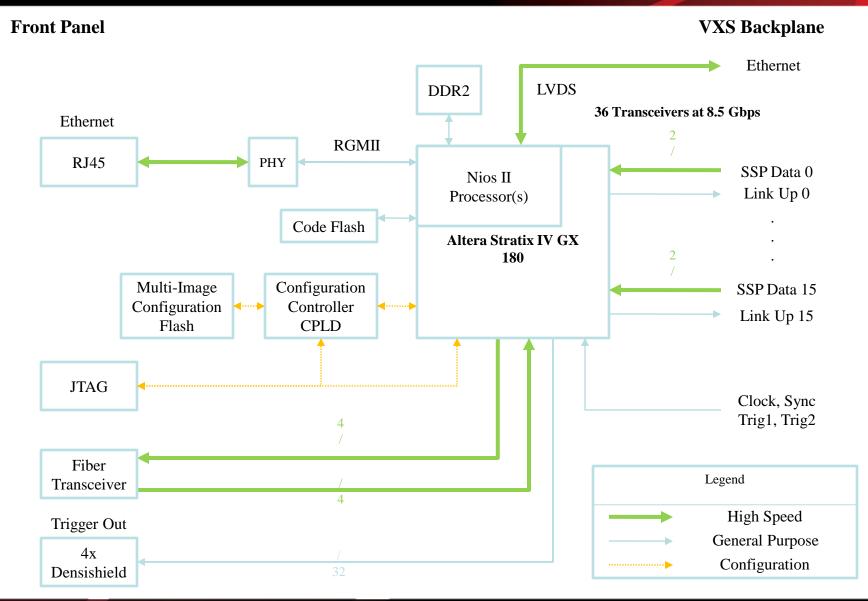


Trigger Decisions to Trigger Distribution Crate {Trigger Supervisor}

19

lefferson Lab

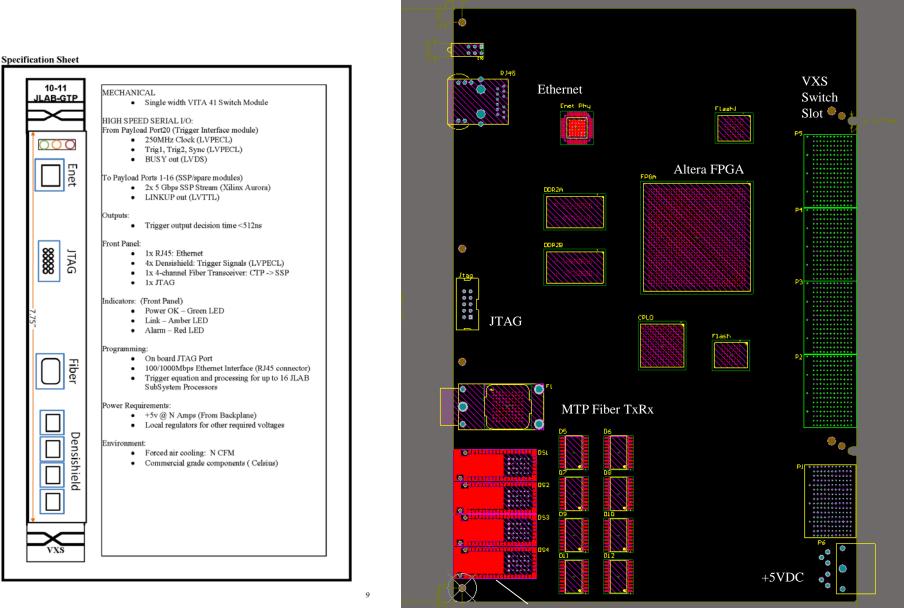
🍘 💎



Scott Kaneta Jan-2011

21

Jefferson Lab

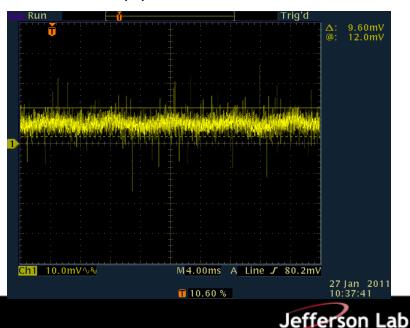

Global Trigger Processor: (GTP)

Scott Kaneta Jan-2011

Global Trigger Processor: (GTP)

LVPECL 4 x 8 pair to TS (P2)

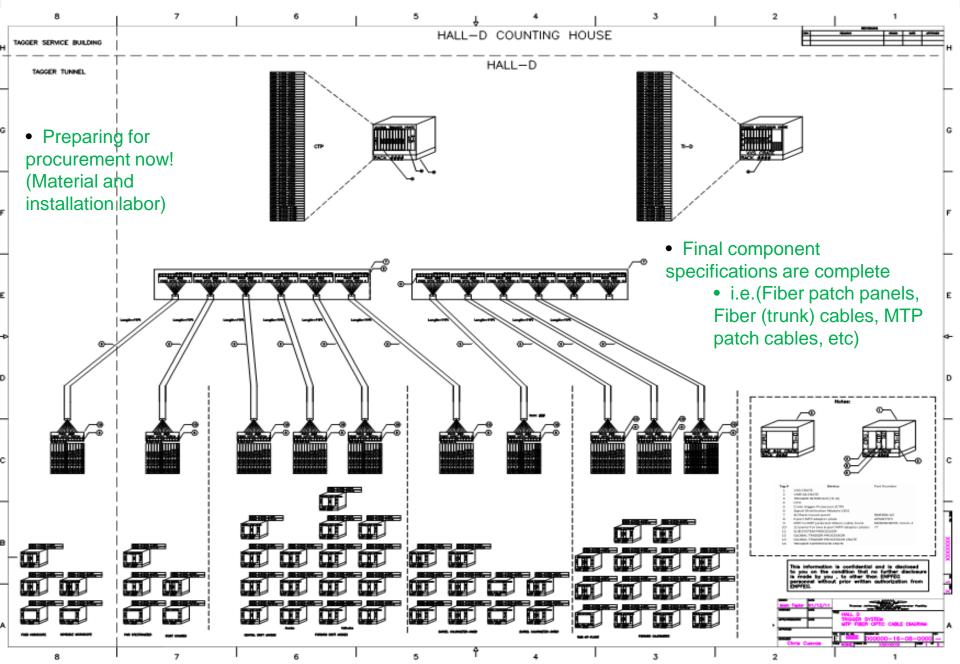
Other Trigger System Essentials

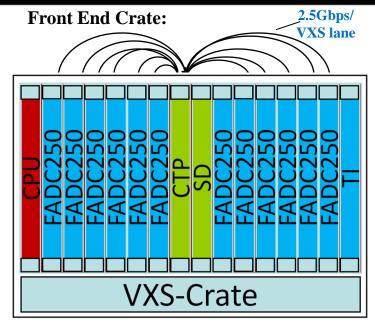

• VXS and VME64x powered card enclosures

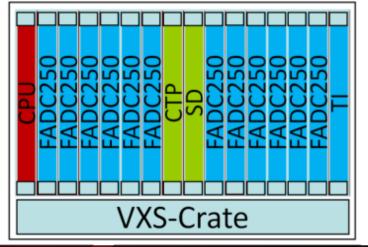
- ✓ Crate specification complete
- ✓ Multi-year contract awarded to W-IE-NE-R, Plein & Baus, Ltd.
- ✓ First article crates (VXS) received 24-Jan-2011
- ✓ Acceptance tests nearly complete
- ✓ (6) -> VME64x & (8) -> VXS crates will be delivered before May-2011
 <u>Will need storage location!!</u>

Hartman VXS 21 Slot Backplane CTP @2.5Gbps to each payload port Correctly mapped

concert mapped														
🎯 Waveform - DEV:2 MyDevice2 (XC5VLX110T) UNIT:0 MyILAO (ILA)														
Bus/Signal	х	0	325 365	405	445	485	525	565	605	645	685	725	765	805
<pre></pre>	EA	EA			(1,1,1,1)				1.1.1.1	1.1.1.1	(1,1,1,1)	0.000		1.1.1.1
<pre>- /encoder_in<0></pre>	0	0												
<pre>- /encoder_in<l></l></pre>	1	1												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
<pre>- /encoder_in<2></pre>	0	0	ההההההה	າທາກ	າດກາດ			ոոու	ուսու	ուսու	INNIN	MM	MM	າທາກ
<pre>- /encoder_in<3></pre>	1	1	mm	ллл	ா	M	ЛЛ	տ	ЛЛ	บบา	யா	UU	ா	UП
<pre>- /encoder_in<4></pre>	0	0				ГП								
<pre>- /encoder_in<5></pre>	1	1												
<pre>- /encoder_in<6></pre>	1	1												1
/encoder_in<7>	1	1												1
- /encoder_k	0	0												
<pre> /decoder_out<5> </pre>	C7	C7			(1,1,1,1)				1.1.1.1	1.1.1.1	(1,1,1,1)	e e e e		1.1.1.1
<pre>- /decoder_out<5></pre>	1	1												
<pre>- /decoder_out<5></pre>	1	1												nnnnn
<pre>- /decoder_out<5></pre>	1	1		מממת	տու	התתת	າດດາດ		տոր	ທາກນ	uuuu	սոող	WWW	NNN
<pre>- /decoder_out<5></pre>	0	0	mm	ЛЛ	ய	ЛЛ	ЛЛ	ากก	JUU	nn	տո	ΠΠ	M	UU
<pre>- /decoder_out<5></pre>	0	0				П					பா			
<pre>- /decoder_out<5></pre>	0	0												
<pre>- /decoder_out<5></pre>	1	1												
/decoder_out<5>	1	1												
<pre>- /decoder_k<5></pre>	0	0												
1		· · ·												


+5VDC; Ripple Measurement <10mVp-p; 50A load


Other Trigger System Essentials Trigger System Fiber Optics FY11 Work Plan


 System diagrams have been updated for Hall D installation

24

Two DAQ Crate Testing: FY11

- Several modules have been revised and will need to be thoroughly tested. (FADC250, SD, TI-D)
- The initial SSP will be used to sum the trigger data from 2 CTP

• Multiple crate 'system level' testing is imperative before approving large quantity orders.

- Will verify Gigabit serial lanes from each slot
 - 1st Time for 16 boards!!!
- Will measure trigger latency
- Will measure trigger rates/VME data rate
- Will measure BitErrorRates
- Will test using "Playback" mode
 - (No input cables necessary)
- Perfect opportunity to fully test latest revision of CODA board 'libraries'
- Plan to use latest CPU as proposed by DAQ group

Summary

- FY10 board design project goals have been achieved
- FY11 plan includes aggressive test plans for all modules
- GTP prototype and completion of *FINAL* revisions for trigger modules in FY11
- High level of detailed design work is exemplary and board tests meet specification
- Work activity schedule shows estimate to completion plan is reasonable
 - o Production quantities for all halls have been considered
- 2 full DAQ crates with all trigger module units will be tested in spring
- Time to think about 4th annual 12GeV Trigger Workshop
 - $\circ~$ Will have plenty of results from full crate testing
 - Plenty of other work remains for pre-commissioning 'tools' and test plans
- Weekly 12GeV Trigger meeting continues to produce good discussions and ideas for implementation of system level test programs and details of hardware designs.

26

All sorts of good stuff

GlueX Level 1 Timing

2.3µs measured latency remaining latency t4 ts. t7 t₂ t₃ _ _ _ _ - -FADC250 SSP CTP GTP Global **Trigger Crate** Link: 64bits @ 125MHz Link: 32bits @ 125MHz BCal, FCal Mode: Link: 64bits @ 125MHz BCal, FCal Mode: BCal, FCal Mode: 19:0 ADCSum to 15:0 ADCSum to 39:20 ADCSum t 22:0 ADCSum to 31:16 ADCSum t₁ Link: 32bits @ 250MHz TOF, ST Mode: 55:23 ADCSum t 31:0 Triggers(31:0) TOF, ST, Tagger Mode: 8:0 TrackCount te 63:56 Unused 15:0 Hit Bits to TOF, ST Mode: 17:9 TrackCount te 31:16 Hit Bits to 39:18 Unused 11:0 TrackCount t. Tagger Mode: 23:12 TrackCount t_a 7:0 MinHit ta 63:24 Unused t₁₈ 15:8 MaxHit to Tagger Mode: TS et Front-end Crate 23:16 MinHit t, 7:0 MinHit te 31:24 MaxHit te 15:8 MaxHit L 39:32 Unused 23:16 MinHit t_a All Modes: 31:24 MaxHit t₂ 47:40 Timestamp 63:32 Unused 63:48 ECC Link: 3bits @ 250MHz **Trigger Distribution** 0 Trigger 1 1 Trigger 2 2 Sync Crate Link: 16bits @ 62.5MHz 15:0 TriggerWord SD TD SD TΙ t₁₄ t₁₅ t₁₃ t₁₇ t₁₁ t₁₆

2.3µs (measured) + 660ns (estimated) < 3µs!

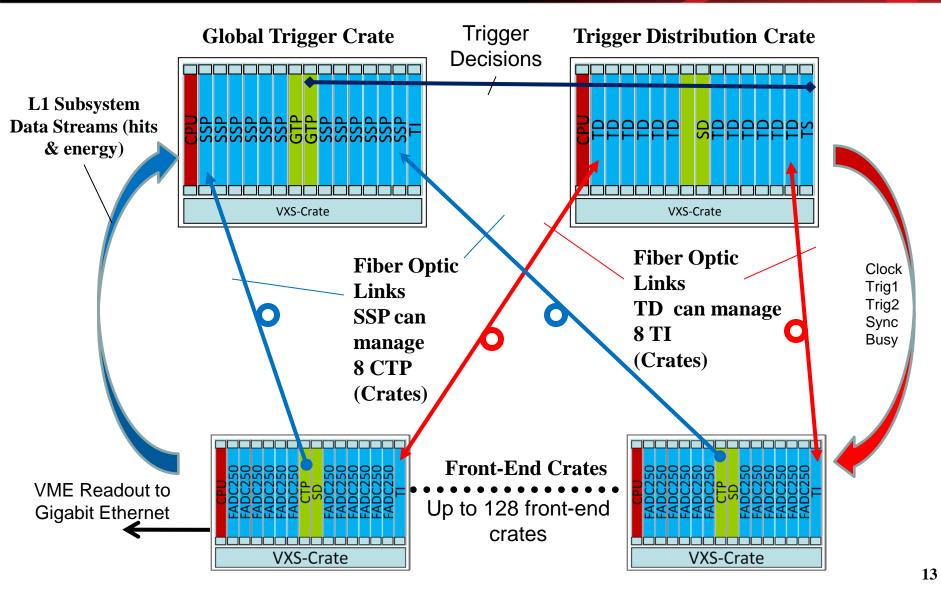
Fiber Optic Link Copper Ribbon Cable VXS Backplane

660ns estimated

21

Schedules, work plans for FY11 - FY13

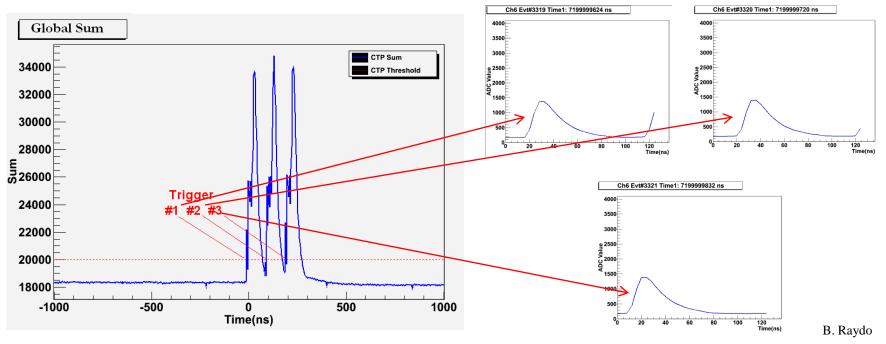
• FY10 design projects are at full resource pace!


- > FADC250 \rightarrow Latest revision at end of FY10. TEST in FY11.
- F1TDC-V2→ Work plan moved to FY11
- SD → Latest revisions virtually complete. Order, assemble, TEST in FY11
- > SSP \rightarrow Prototype received. Initial testing is proceeding nicely. Further testing in FY11.
- ≻ TI-TD → Prototype(s) received. Initial testing is proceeding nicely.
 Firmware development and multi-crate testing in FY11
- > 16 Channel LE Discriminator/Scaler (Hall B requirement)

7 'production' units under test now

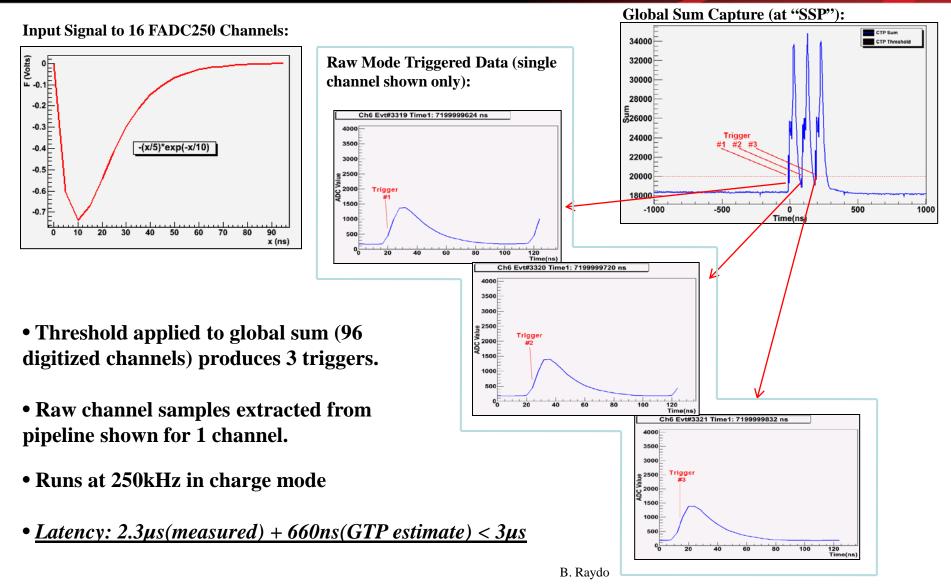
- > VXS Crate Specification \rightarrow Order should be awarded before Oct-10
- > GTP \rightarrow Scott Kaneta joins the group! GTP slips to FY11
- ➤ TS → Specified, and planned for FY11-FY12
- Baseline Improvement Activities (BIA) review on 17-September
- FY11 will be an intensive year of significant 'system' level testing to assure that these boards are ready for final production quantity orders in early FY12

Level 1 & Trigger Distribution



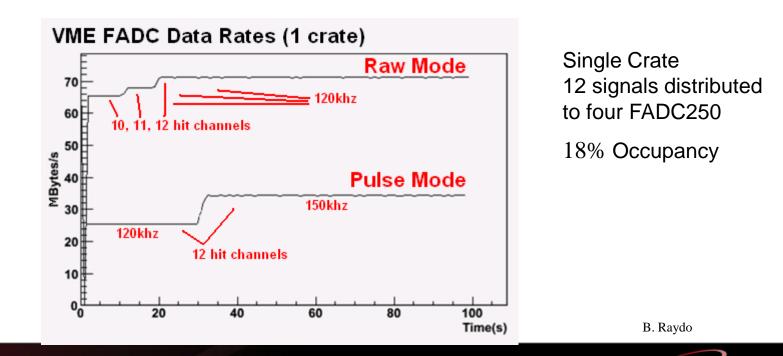
Synchronized Multi-Crate Readout

- CTP #2 is also acting as an SSP (by summing the local crate + CTP#1 sum over fiber
- A programmable threshold is set in CTP, which creates a trigger when the global sum (6 FADC boards => 96 channels) is over threshold.
- Example test with a burst of 3 pulses into 16 channels across 2 crates/6 FADC modules


A 2µs global sum window is recorded around the trigger to see how the trigger was formed:

Example Raw Event Data for 1 FADC Channel:

2 Crate Energy Sum Testing



Synchronized Multi-Crate Readout Rates

- FADC event synchronization has been stable for several billion events @ ~150kHz trigger rate.
- Have run up to 140kHz trigger rate in raw window mode, up to 170kHz in Pulse/Time mode.
- Ed Jastrzembski has completed the 2eSST VME Interface on FADC allowing ~200MB/s readout

Jefferson Lab

