The GlueX Barrel Electromagnetic Calorimeter

GlueX Scientific Goals and Means

GlueX Physics

- Elucidate the phenomenon of confinement in QCD
- Definitive and detailed mapping of hybrid meson spectrum
- Search for smoking gun signature of exotic J^{PC} hybrid mesons; no mixing with qq
- Test photo-couplings and phenomenology
- ss and baryon spectroscopy, Primakoff effect, rare eta decays, etc...

Tools for the GlueX Project at Jefferson Lab

- 12 GeV electrons, 9 GeV tagged, linearly polarized photons with high flux
- Detector: hermiticity, resolution, charged and neutrals
- Spin-Amplitude Analysis of multi-particle final states
- Computing power: Pb/year data collection, distributed computing, grid tools,...

Key detector subsystem: BCAL

- Pb-Scintillating Fibre sampling calorimeter
- 70% of decay photons are captured by BCAL
- 50% of BCAL ones have energies < 300MeV
- 40 MeV 3.5 GeV operating range; high magnetic field, tight space
- Under construction at Regina
- Recent results: fibre testing and construction status quo
- Collaboration: 75 physicists, 16 institutions, 6 countries, active theory group

BCAL Highlights

Key component of the GlueX detector

- Crucial for reconstructing γ from π^0 and η resulting from decay mesons
- Provides timing information (neutrals/charged)
- With the CDC it provides charged particle PID
- It supplies secondary dE/dx

Geometry & Configuration

- Sampling calorimeter (11% sampling fraction)
- Based on KLOE Emcal design
- BCAL: ~25 tonnes
- The scintillating fibres have a polystyrene core which produces 8000 photons/MeV and are blue-green, double clad (increases light captured by \sim 50%).

Machined module: 15,350 fibres

BCAL Schematics

BCAL Readout: GlueX sets SiPM Array Standard!

BCAL Expected Performance

$$\frac{\sigma_E}{E} = \frac{5.5 \pm 0.1\%}{\sqrt{E}} \oplus 2.4 \pm 1\%$$

$$KLOE \quad \left(\frac{\sigma_E}{E} = \frac{5.4\%}{\sqrt{E}} \oplus 0.7\%\right)$$

BCAL: 660 pe/GeV vs KLOE: 700 pe/GeV • single clad fibers, better light guides

time difference resolution

$$\sigma_{\Delta T/2} = \frac{70 \, ps}{\sqrt{E(GeV)}}$$

$$KLOE \quad \left(\sigma_t = \frac{72 \, ps}{\sqrt{E}}\right)$$

NIMA 48874 (2008)

http://dx.doi.org/10.1016/j.nima.2008.08.137

Beam Test

Fibre Quality Assurance

SCSF-78MJ 780,000 fibres

Regina & Kuraray measurements track Fibres meet specifications

Matrix Construction Facility @ Regina

ROLLING

GLUING

QUALITY CONTROL AT EVERY STEP

SWAGGING

PRESSING

Machined Modules

Project duration: 36 months

1st detector delivery for 12 GeV program!

- Excellent finish of end faces & transmission uniformity
 - 36 modules have been built
 - 28 are at Jefferson Lab

Summary

- The nature of confinement is an outstanding and fundamental question of quarks and gluons in QCD.
- LQCD and phenomenology suggest flux-tubes as the explanation.
- The excitation of the gluonic field leads to an entirely new spectrum of mesons as predicted by LQCD. Data are needed.
- PWA and improved theoretical understanding is required.
- The definitive experiment for this search will be GlueX at the energy-upgraded JLab. If exotic hybrids are there, we will find them!
- Hall D 'beneficial occupancy' in fall 2011.
- BCAL construction is ahead of schedule; completion in spring 2012.
- Detector integration in 2013.
- Engineering data in 2014.
- Physics data in 2015.

GlueX-Regina Team

current team members:

Y. Cao, S. Katsaganis, D. Kolybaba, S. Krueger, T. Li,

M. Litzenberger, G. Lolos, E. Plummer, H. Qian,

M. Sauder, A. Semenov, I. Semenova, M. Tahani, L. Teigrob past team members:

A. Baulin, J. Chan, B. Giesbrecht, A. Heinrichs,

B. Leverington, K. Janzen, L. Sichello, Y. Sun,

K. Vuthitanachot, Y. Yongzhe, A. Watson

Thank you for your attention!

Backup Slides

Flux Tubes – Model & LQCD

In the simple quark model, glue is not needed to describe hadrons.

But in QCD: Allowed systems: gg, ggg, $q\overline{q}g$, Hybrids Molecules

Color Field: Gluons possess color charge: they couple to each other!

| I=1/2, |S|=1 | I=1, S=0 | I=0, S=0

q

π or K beam

Quark spins

anti-aligned

Evidence for Exotic Hybrids?

Data Candidates & Issues

State	Mass (GeV)	Width (GeV)
$\pi_1(1400)$	1.351 ± 0.03	0.313 ± 0.040
$\pi_1(1600)$	1.662 ± 0.015	0.234 ± 0.050
$\pi_1(2015)$	2.01 ± 0.03	0.28 ± 0.05
State	Production	Decays
$\pi_1(1400)$	$\pi^-p,\!ar p n$	$\pi^-\eta^{\ddagger},\!\pi^0\eta^{\ddagger}$
$\pi_1(1600)$	$\pi^- p,\! \bar p p$	$\eta'\pi,b_1\pi,f_1\pi, ho\pi^{\ddagger}$
$\pi_1(2015)$	$\pi^- p$	$b_1\pi,f_1\pi$
State	Experiments	
$\pi_1(1400)$	E852, $CBAR$	
$\pi_1(1600)$	E852, VES, C	OMPASS, CBAR
$\pi_1(2015)$	E852	

- Low statistics
- Possible leakage due to acceptance issues or insufficient no of wave sets
- Interpretation of line shapes and phases
- Inconsistencies in production
- Controversial decay channels

LQCD Hybrid Predictions

PSS IKP $\pi_1 1^{-+} 81 - 168 117 b_1\pi, \rho\pi, f_1\pi, a_1\eta$ $\eta_1 1^{-+} 59 - 158 107 a_1\pi, f_1\eta, \pi(1300)\pi$ $\eta_1' 1^{-+} 95 - 216 172 K_1^m K, K_1^l K, K^* K$ $b_0 0^{+-} 247 - 429 665 \pi(1300)\pi, h_1\pi$ $h_0 0^{+-} 59 - 262 94 b_1\pi, h_1\eta, K(1460)K$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$b_0 0^{+-} 247 - 429 665 \pi(1300)\pi, h_1\pi$ $h_0 0^{+-} 59 - 262 94 b_1\pi, h_1\eta, K(1460)K$
$h_0 0^{+-} 59 - 262 94 b_1\pi, h_1\eta, K(1460)K$
100 0 00 202 01 0111, 1111, 11 (1100)11
1/ 0+= 050 400 400 75/1400 75 75/75 1
$h_0' = 0^{+-} 259 - 490 = 426 = K(1460)K, K_1^l K, h_1 \eta$
$b_2 2^{+-} 5-11 \qquad 248 \qquad a_2\pi, a_1\pi, h_1\pi$
$h_2 2^{+-} 4-12 166 b_1\pi, \rho\pi$
$h_2' 2^{+-} 5-18 \qquad 79 \qquad K_1^m K, K_1^l K, K_2^* K$

- Different masses for hybrids
- Width ranges vary

glue string

LQCD Isovector Meson Map

Two flavours of light quarks and one tuned to the strange quark mass

-colour_denotes spin - no lattice volume effect

(unquenched, spectrum of light-guark mesons)

BCAL Construction QC/QA: Fibres

- Kuraray SCSF-78MJ (450nm peak)
- diameters: within specs
- Spectra measured at Regina qualitatively agree with Kuraray's
- response is acceptable and scales by distance in a similar fashion

780,000 fibres

