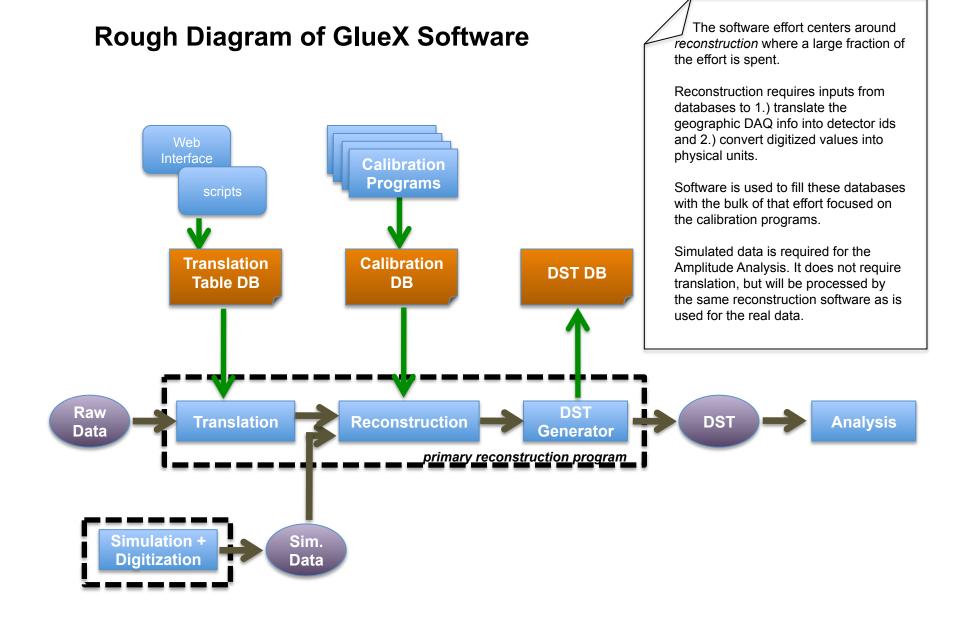
The June Software Review

David Lawrence, JLab Feb. 16, 2012

(some history) May 10, 2011 IT Review

An internal JLab review of IT readiness was done on May 10th, 2011. This was intended as a "warm up" for the review coming this summer.

Charge to the review panel:


We request that the review panel address the following points for IT in the 12 GeV era:

- An assessment of the state of current software and systems developments An assessment of planning for bringing all software to a suitable level of maturity, including software testing for correctness and performance
- An assessment of planning for an evolution of computing, networking and storage capacity and performance to address the needs of detector simulation and data analysis
- An assessment of the IT infrastructure to meet requirements including support for other areas, e.g. accelerator, light source, theory, operations
- An assessment of the quality and effectiveness of the management of the major efforts to prepare
- As assessment of the resources, budget and staffing, to meet the needs of the program
- one day review
- afternoon session focused on non-ENP* software
 - Management Information Systems
 - Networking and Infrastructure
 - Accelerator Controls
- Hall-D had one 25-minute talk given by Mark Ito.

From May IT Review closeout

... these items were specific to the experimental halls...

- Software: No common process for defining requirements, no common management structure
- 4 halls not sharing much software
- Hall D:
 - D's requirements not as well defined as other halls
 - Software head seems to have insufficient authority to direct software development priorities (i.e. software architect)
 - 2 FTE seems too small for 40% of effort planned for Jefferson Lab
 - Hall D Offsite computing & networking requirements nebulous
- Halls do not yet have robust plans for testing and reviewing readiness to operate.
- Identification of risks, and addressing risks, still needs to be done

Configuration DB

Conditions DB

The configuration DB will hold information used to configure the online systems prior to data taking. The conditions DB will have values read from the online systems streamed into it during data taking.

For simplicity, not all connections are shown. (e.g. arrow from "Raw Data" to "Calibration Programs")

Hall-D Software Activity Schedule

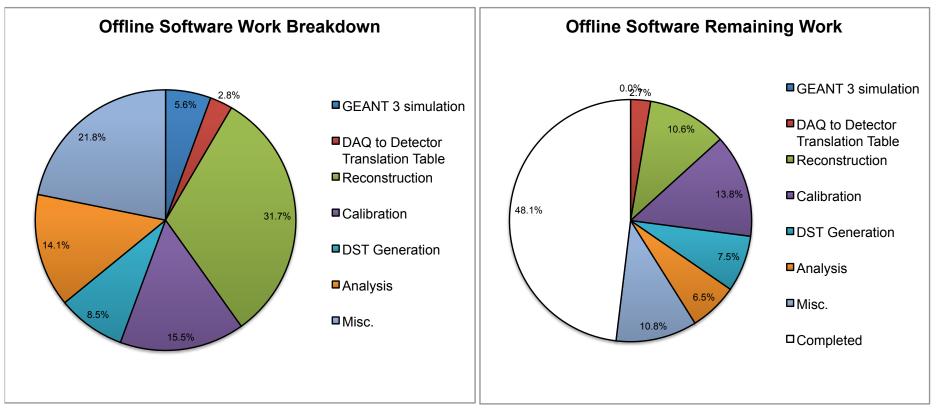
	Dudgeted				
	Budgeted Labor				fraction of
		FTF-vears	% complete	Responsible Persons	project
GEANT 3 simulation	88	2.0		Richard Jones	5.6%
GEANT 4 simulation	88	2.0	0%		3.070
DAQ to Detector Translation Table	44	1.0	5%	JLab	2.8%
Reconstruction	495	11.3	67%	5245	31.7%
Reconstruction Framework	44	1.0	-	David Lawrence	011170
CDC Reconstruction	33	0.8		David Lawrence	
FDC Reconstruction	33	0.8		Simon Taylor	
Track Finding	66	1.5		Simon Taylor/David Lawrence	
Track Fitting	66	1.5		Simon Taylor	
BCal Reconstruction	44	1.0		Matt Shepherd/Zisis Papandreou	
FCal Reconstruction	33	0.8		Matt Shepherd/Richard Jones	
TOF Reconstruction	33	0.8		Paul Eugenio	
Tagger Reconstruction	33	0.8	0%		
Start Counter Reconstruction	22	0.5		Simon Taylor/Werner Boeglin	
Particle ID	44	1.0		Paul Mattione	
Kinematic Fitter	44	1.0		Matt Shepherd	
Calibration	242	5.5		Matt Shepherd	15.5%
Calibration Database	33	0.8		Dmitry Romanov	15.5%
CDC Calibration	33	0.8			
FDC Calibration	33		0%	Jlab	
BCal Calibration	33	0.8 0.8	0%	Univ. of Regina	
FCal Calibration	33	0.8	0%	Univ. of Regina IU	
Tagger Calibration	33	0.8	-	UConn/??	
Starter Counter Calibration	22	0.5	0%	FIU	
TOF Calibration	22	0.5	0%	FSU	
DST Generation	132	3.0	11%		8.5%
Data format	44	1.0	33%		
Micro DST Writer	22	0.5	0%		
Job Control Reconstruction	33	0.8	0%		
Job Control/Database for Simulation	33	0.8	0%		
Analysis	220	5.0			14.1%
PWA Development	132	3.0		Matt Shepherd/Ryan Mitchell	
PWA Challenge	44	1.0	0%		
Grid Implementation	44	1.0	0%	UConn/??	
Misc.	341	7.8	50%		21.8%
Event Viewer (adapted from online)	22	0.5	50%	David Lawrence	
Documentation	88	2.0	40%		
MC Studies for Detector Optimization	132	3.0	95%		
Integration of Slow Controls	33	0.8	0%	Elliott Wolin/Hovanes Egiyan	
Integration/QC	44	1.0	0%		
Coordination	22	0.5	0%	Mark Ito	
	Man-				
	weeks	FTE-years	6		
Total	1562.0	35.5			100.0%

 Activity schedule adopted for **BIA** (Baseline Improvement Activity) Bigg Bad le luex Software •Tracking of BIA stopped in 2009 Programs Minor tweaks including DST DB addition of a couple of lines (e.g. Data Format-under DSI Generation) •%-complete column added and based purely on my "engineering judgment" online systems prior to data taking. The conditions DB will For simplicity, not all co have values read from the online systems streamed into it "Raw Data" to "Calibra during data taking. Responsible Persons column

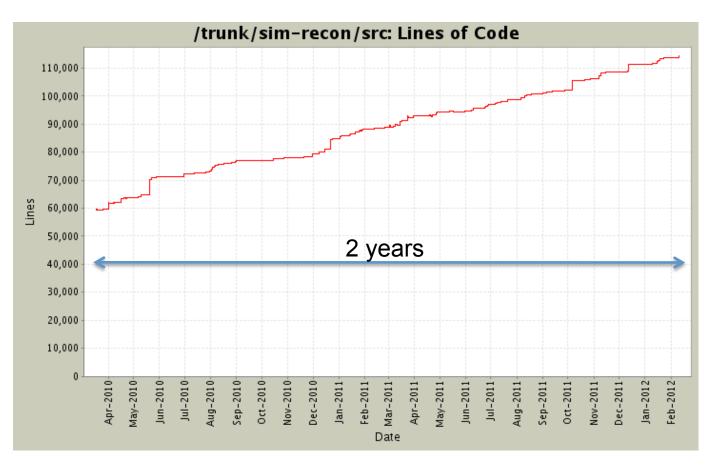
added

Th recor the et Reco datab

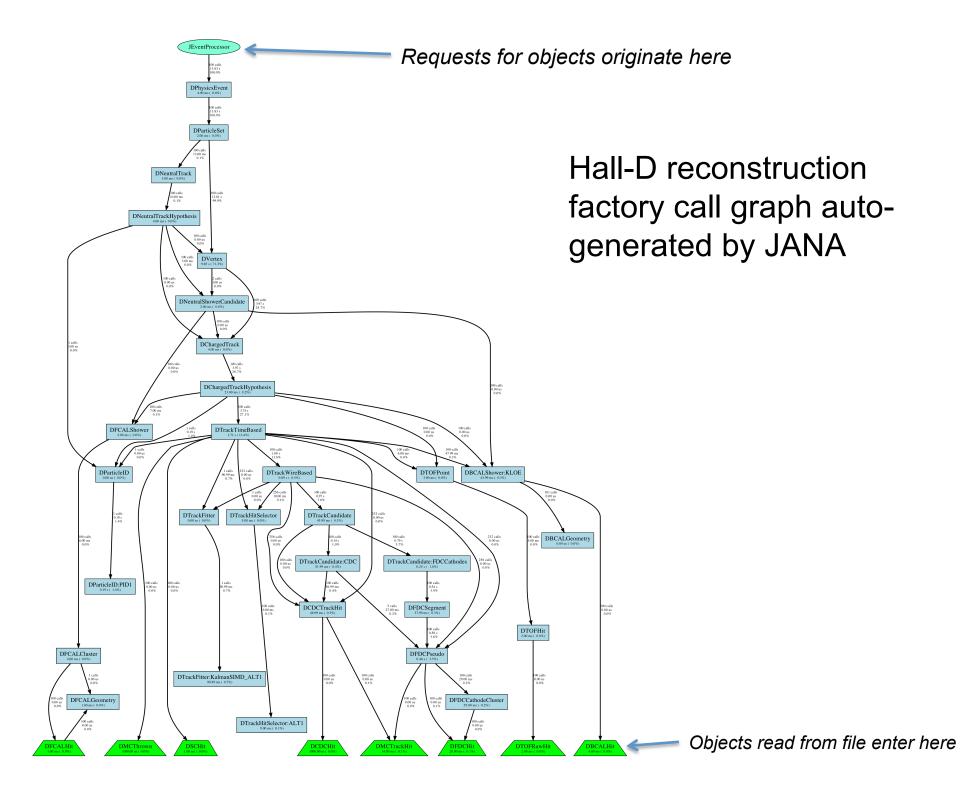
geog and 2 physi

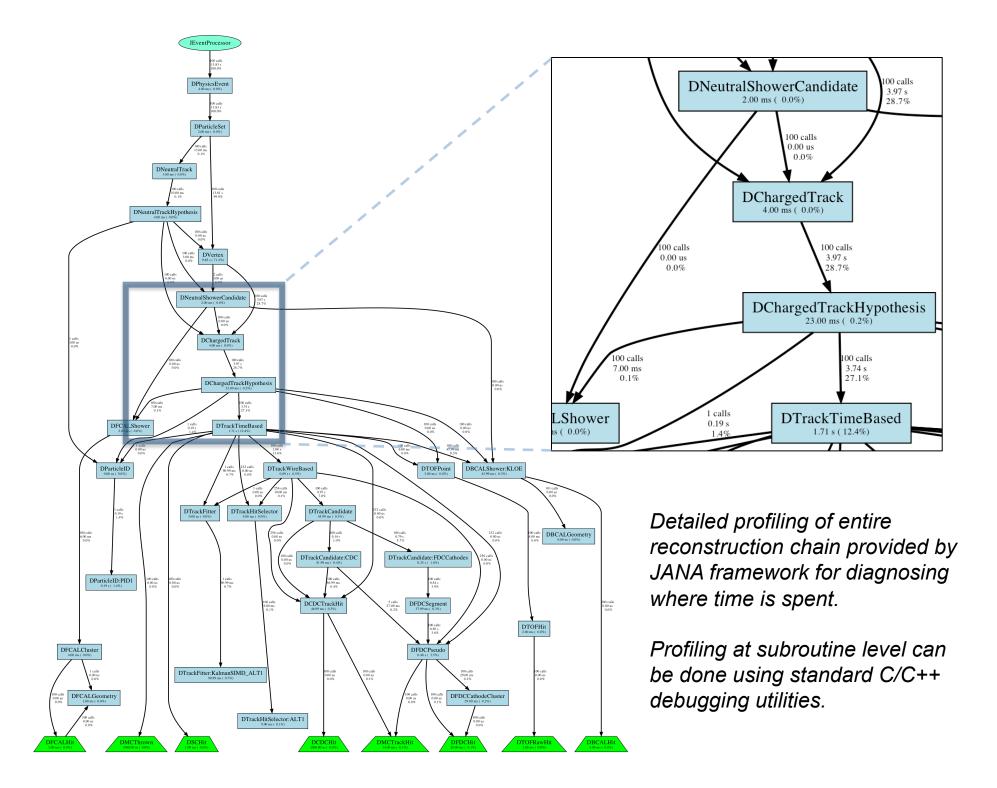

Softw with t the ca Simu

Ampl trans the sa


used

Overall status of Hall-D Software Activities


	Budgeted			
	Labor			
	Units	% of	%	
	(MW)	effort	complete	% of total project remaining
GEANT 3 simulation	88	5.6%	100%	0.0%
DAQ to Detector Translation Table	44	2.8%	5%	2.7%
Reconstruction	495	31.7%	67%	10.6%
Calibration	242	15.5%	11%	13.8%
DST Generation	132	8.5%	11%	7.5%
Analysis	220	14.1%	54%	6.5%
Misc.	341	21.8%	50%	10.8%
Completed				48.1%



Hall-D Software Development

Steady development over the last few years. (Repository restructuring 2 years ago limits reach of this plot).

1 G	ilueX Computing Model			
	arameter	value	units	comments
	vent rate		events/s	raw data rate out of the counting room when beam is on
-	nnual running		weeks	amount of running in a year
	unning efficiency	0.5		fraction of wall time when beam is on, either due to beam unavailable or detector not ready
	ffective event rate	6707.734428		Event rate averaged over time
8 "	ilective event late		events/year	Event rate averaged over time
-	DI Ltime per event			
_	PU time per event		CPU-s/event	Time to reconstruct a single event on a 2.8 GHz Nehalem machine, per thread, from Simon's email of 1/31/201
	ingle Pass 1 CPU needed	894.3645905		number of threads to keep up with the raw event rate
	aw event size	15000		size of a single raw event
	aw instantaneous storage rate		MB/s	data rate when beam is on
	aw effective storage rate		bytes/year	average data volume rate
	aw effective storage rate	3173.026694		average data volume rate
P	ass 0 event fraction	0.05		fraction of events from raw data stream to perform calibrations
	ass 1 repetition factor	2		number of times event reconstruction will be repeated
	ass 0 repetition factor	2		number of times calibration will be repeated
	ass 0 CPU need	89.43645905	CPU's	number of threads of calibration to keep up
19 p	ass 1 CPU need	1788.729181	CPU's	number of threads of reconstruction to keep up
20 st	tream/pass-1 CPU ratio	0.1		ratio of CPU time required for a skim stream to that needed for reconstruction
	tream output to input size ratio	0.1		ratio of data volume output for a stream to that of input
	tream multiplicity factor	5		number of streams to be produced
	ingle stream CPU need	89.43645905	CPU's	number of threads for one stream to keep up
	tream repetition factor	2		number of times streaming will be repeated
	tream CPU need	894,3645905		number of threads for streaming to keep up
	ingle stream output data rate	2.012320329		······································
	otal stream output data rate		PB/year	
	IC CPU ratio per event, generation		CPU-s/event	ratio of CPU time required for generating a Monte Carlo event to that needed for reconstruction
	IC CPU ratio per event, generation	0.5	OF 0-alevent	ratio of CPU time to reconstruct Monte Carlo events to that to reconstruct real data
	/C/raw data event rate ratio	2		ratio of number of Monte Carlo events needed to number of raw data events
	IC event size			
		15000		size of a single generated Monte Carlo event
	AC multiplicity factor	2		number of times MC data will need to be generated
	AC effective event rate	26830.93771		event rate averaged over time of MC event generation
	IC CPU need	5366.187543		numbers of threads needed for generating Monte Carlo
	IC pass 1 output event size		bytes	size of a single reconstructed Monte Carlo event
-	IC effective data rate	80.49281314		
_	IC effective data rate		PB/year	
	nalysis/pass-1 CPU ratio	0.1		ratio of CPU time required for performing a physics analysis to that needed for reconstruction
	nalysis multiplicity factor	10		number of analyses to be conducted
	nalysis CPU need	894.3645905	CPU's	number of threads needed for analysis
41 to	otal CPU need	9033.082364	CPU's	total number of threads needed for all activities
12 to	otal CPU need exclusive of MC	3666.894821	CPU's	total number of threads needed for all activities
43 d	ata rate, tape to cache disk	100	MB/s	average rate from tape library to cache disk
44 d	ata rate, cache disk to local disk	3	MB/s	average rate from cache disk to local farm node disk
45 ra	aw data recording tape need	1.006160164		
	ass 1 output to input size ratio	0.2		ratio of output event size to input event size
	ass1 processed event size	3000	bytes	reconstructed event size
	ingle pass 1 output data rate	20.12320329		data rate for a single pass 1 output stream
	otal pass 1 output data rate		PB/year	data rate for all pass 1 output streams
	Single pass 0 output data rate	1.006160164		data rate for a single pass 1 output stream
	otal pass 0 output data rate	0.063504		data rate for all pass 0 output streams
	ingle pass 1 tape need	1.207392197		number of tape drives needed to support pass 1, one iteration
	ass 1 tape need			
		2.414784394		number of tape drives needed to support pass 1, all iterations
	ingle pass 0 tape need	0.06036961		number of tape drives needed to support pass 0, one iteration
_	ass 0 tape need	0.12073922		number of tape drives needed to support pass 0, all iterations
	ingle stream input tape need	2.012320329		number of tape drives needed to support input for streaming, one iteration
	ingle set of stream output tape need (all str			number of tape drives needed to support output for streaming, one iteration
	otal stream tape need	6.036960986		number of tape drives needed to support streaming, all iterations
	IC tape drive need	0.804928131	drives	number of tape drives needed to archive reconstructed MC data
50 to	otal tape drive need	10.3835729		total number of tape drives needed for all activities
51 d	isk usage per analysis	20	TB	permanent disk space used by an analysis
52 d	isk usage total	200	TB	permanent disk space used by all analyses
	otal output rate	7.681810694		

2	GlueX Computing Model						
3	parameter	value	units	comments			
4	event rate		events/s	raw data rate out of the counting room when bear	m is on		
5	annual running		weeks	amount of running in a year			
6	running efficiency	0.5		fraction of wall time when beam is on, either due	to beam unavailable or detector not ready		
7	effective event rate	6707.734428		Event rate averaged over time	to beam unavailable of detector not ready		
8	"		events/year	Event rate averaged over time			
9	CPU time per event		CPU-s/event		Nehalem machine, per thread, from Simon's email of 1/31/20		
10	single Pass 1 CPU needed	894.3645905		number of threads to keep up with the raw event			
11	raw event size	15000		size of a single raw event	Tate		
12	raw instantaneous storage rate		MB/s	data rate when beam is on			
13	raw effective storage rate		bytes/year	average data volume rate			
14	raw effective storage rate	3173.026694		average data volume rate			
15	pass 0 event fraction	0.05		fraction of events from raw data stream to perform	m calibrations		
16	pass 1 repetition factor	2		number of times event reconstruction will be repe			
17	pass 0 repetition factor	2		number of times calibration will be repeated	alou		
18	pass 0 CPU need	89.43645905	CPU's	number of threads of calibration to keep up			
19	pass 1 CPU need	1788.729181		number of threads of reconstruction to keep up			
	stream/pass-1 CPU ratio	0.1	orus	ratio of CPU time required for a skim stream to the	at peeded for reconstruction		
21	stream output to input size ratio	0.1		ratio of data volume output for a stream to that of			
22	stream multiplicity factor	0.1		number of streams to be produced	mpus.		
23	single stream CPU need	89.43645905	CPUle	number of streams to be produced			
24	stream repetition factor	89.43045905		number of times streaming will be repeated			
25	stream CPU need	894.3645905		number of threads for streaming to keep up			
26				number of threads for streaming to keep up			
		2.012320329					
27		0.63504		ratio of ODU time securited for seconding a Market	Onde event to that needed for reconstruction		
28		0.5	CPU-s/event	ratio of CPU time required for generating a Monte			
29	MC CPU ratio per event, reconstruction	1		ratio of CPU time to reconstruct Monte Carlo eve			
	MC/raw data event rate ratio	2		ratio of number of Monte Carlo events needed to number of raw data events			
	MC event size		bytes	size of a single generated Monte Carlo event			
32		2		number of times MC data will need to be generated			
33		26830.93771		event rate averaged over time of MC event gener			
	MC CPU need	5366.187543		numbers of threads needed for generating Monte	Carlo		
35	MC pass 1 output event size		bytes	size of a single reconstructed Monte Carlo event			
	MC effective data rate	80.49281314					
37	MC effective data rate		PB/year				
38	analysis/pass-1 CPU ratio	0.1		ratio of CPU time required for performing a physi	ce analysis to that needed for reconstruction		
39	analysis multiplicity factor	10		number of analyses to be conducted	About 115 computers with		
	analysis CPU need	894.3645905		number of threads needed for analysis	About 115 computers with		
	total CPU need	9033.082364		total number of threads needed for all activities	32 cores each will be		
	total CPU need exclusive of MC	3666.894821		total number of threads needed for all activities			
43			MB/S	average rate from tape library to cache disk	needed just to keep up with		
44			MB/s	average rate from cache disk to local farm node			
45	raw data recording tape need	1.006160164			time-averaged data		
	Pass 1 output to input size ratio	0.2		ratio of output event size to input event size	-		
17	pass1 processed event size		bytes	reconstructed event size	acquisition + calibration		
18	Single pass 1 output data rate	20.12320329		data rate for a single pass 1 output stream			
19	total pass 1 output data rate		PB/year	data rate for all pass 1 output streams			
50	Single pass 0 output data rate	1.006160164		data rate for a single pass 1 output stream			
51	total pass 0 output data rate	0.063504		data rate for all pass 0 output streams	Another 170 will be needed		
2	single pass 1 tape need	1.207392197		number of tape drives needed to support pass 1,	one iteration		
	Pass 1 tape need	2.414784394		number of tape drives needed to support pass 1,	for simulation (+recon.)		
54		0.06036961		number of tape drives needed to support pass 0,			
	Pass 0 tape need	0.12073922		number of tape drives needed to support pass 0,			
	single stream input tape need	2.012320329		number of tape drives needed to support input fo			
57	single set of stream output tape need (all str	1.006160164	drives	number of tape drives needed to support output f			
58	total stream tape need	6.036960986	drives	number of tape drives needed to support streami			
59	MC tape drive need	0.804928131	drives	number of tape drives needed to archive reconstr	ructed MC data		
50	total tape drive need	10.3835729		total number of tape drives needed for all activitie	95		
51	disk usage per analysis	20	TB	permanent disk space used by an analysis			
52	disk usage total	200	TB	permanent disk space used by all analyses			
02							

Software Sharing Among Halls

- Meeting was held on Jan. 26th to discuss areas where halls could share software, minimizing duplication of effort.
- All halls were represented
- Rolf Ent asked halls to get together to discuss specific topics and explore sharing opportunities
- Two items were given to Halls B and D to discuss (a few others for all halls):
 - Tracking Algorithms
 - Multiple, organized discussions have taken place between primaries
 - Hall-B has read-access to our repository and is using it as a reference as they develop their own tracking package
 - CLARA and JANA
 - (see next two slides)

Primary Differences between JANA and CLARA

CLARA

• "Loosely Coupled":

• Allows multiple languages to be combined since each module is a separate process

Data passed between modules by value

• Built-in ability to distribute reconstruction job over multiple computers (cloud)

JANA

• "Tightly Coupled":

• Single language, all modules contained within a single process

- Data passed between modules by reference
- Utilizes external distributed computing mechanisms like the GRID and Auger

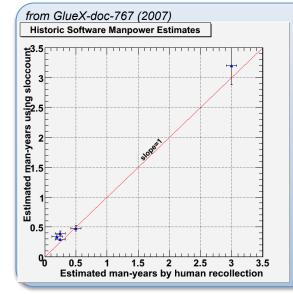
CLARA is designed to provide interactive access to a system of services hosted either on a single node or distributed over a cloud

JANA is designed to make maximal use of a local, multi-core resource

Functionality common to both JANA and CLARA

- Framework for event reconstruction
 - Modular:
 - allow easy replacement of one or more algorithms
 - allow independent development of modules by separate groups
 - Provides mechanism to parallelize reconstruction using multiple cores on the same computer
 - Plugin mechanism to allow extension of existing functionality at run time

How JANA and CLARA might used in conjunction

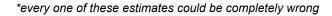

JANA could be used to implement CLARA services that need to be highly efficient.

CLARA could be used to deploy JANA applications as shared services in a network distributed cloud computing environment.

The primary benefit to CLAS12 users of integrating JANAbased components into a CLARA-based system could be overall faster reconstruction for a fixed set of resources.

The primary benefit to Hall-D users of wrapping JANAbased programs as CLARA services would be gaining an interactive distributed computing environment that could provide a faster simulation/analysis cycle for specific studies.

Manpower

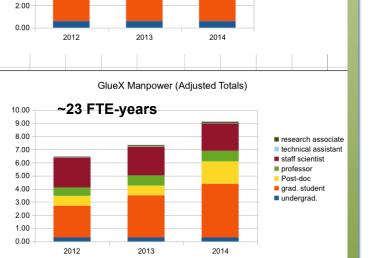


• Use standard COCOMO model to estimate man-years put into CLAS offline software

• Estimate was ~53 man-years for core CLAS offline

• GlueX was estimated to need ~40 man-years to be ready for start of operations

- It is estimated that we will need approx.
 40 FTE-years of offline software effort total for GlueX*
- Estimate is that we have done ~ 50% of work for offline software*
- Remaining 20 FTE-years of estimated work is well matched with manpower commitments from collaboration*


Raw Tota	als									
	undergrad.	grad. student	Post-doc	professor	staff scientist		research associate			
2012	0.59	3.23	0.75	0.86	2.27	0.05	0.05			
2013	0.59	4.28	0.75	1.03	2.18	0.05	0.0			
2014	0.59	5.46	1.70	1.07	2.09	0.05	0.09			
Adjusted	d Totals									
	undergrad.	grad. student	Post-doc	professor	staff scientist	technical assistant	research associate			
2012	0.30	2.42	0.75	0.64	2.27	0.03	0.0			
2013	0.30	3.21	0.75	0.77	2.18	0.03	0.09			
2014	0.30	4.10	1.70	0.80	2.09	0.03	0.0			
efficiency factor	0.5	0.75	1	0.75	1	0.75				
GlueX Manpower (Raw Totals)										
12.00 ~28 FTE-years										

10.00

8.00

6.00

4.00

research associate
 technical assistant

staff scientist

Post-doc

undergrad.

arad. student

Summary

- Software review is scheduled for early June 2012.
- Focus will be on having offline software development on track to be ready for analysis by the start of data taking
- Integrated GlueX manpower seems to be well-matched with what is needed to meet this goal

Backup Slides

outline

- Software Review details (charge, scope, ...)
 - May review charge
 - May review recommendations
- Mark's spreadsheet numbers for resources needed
- Existing software
 - LOC vs. time plot
 - janadot call graph
- BIA schedule
 - Rough diagram
 - Activity list
 - Pie charts
- Brainstorming session on collaborative efforts
 - Results of Tracking discussion
 - Results of JANA/CLARA discussion (3 slides)
- Manpower