The GlueX Experiment: construction is under way

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

GlueX Scientific Goals and Means

• <u>GlueX Physics</u>

- Elucidate the phenomenon of confinement in QCD
- Definitive and detailed mapping of hybrid meson spectrum
- Search for smoking gun signature of exotic J^{PC} hybrid mesons; no mixing with $q\bar{q}$
- Test photo-couplings and phenomenology
- ss and baryon spectroscopy, Primakoff effect, rare eta decays, etc...

• Tools for the GlueX Project at Jefferson Lab

- 12 GeV electrons, 9 GeV tagged, linearly polarized photons with high flux
- Detector: hermiticity, resolution, charged and neutrals
- Spin-Amplitude Analysis of multi-particle final states
- Computing power: Pb/year data collection, distributed computing, grid tools,...

• <u>Key detector subsystem</u>: **BCAL**

- Pb-Scintillating Fibre sampling calorimeter
- 70% of decay photons are captured by BCAL
- 40 MeV 3.5 GeV operating range; high magnetic field, tight space
- Recent results: fibre testing and readout, construction status quo

Flux Tubes - LQCD & Models

In the simple quark model, glue is not needed to describe hadrons.

 $\Lambda\Lambda$

ERIMENT

www.gluex.org

Quark-Gluon Activity

Meson

Charge Density

Baryon

D. Leinweber

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

Flux Tube Quantum Numbers

How do we look for gluonic degrees of freedom in spectroscopy?

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

Isovector Meson Map from LQCD

 $\lambda \Lambda$

ERIMENT

www.gluex.org

Production of Hybrid Mesons

Combine excited glue QN $J^{PC} = 1^{+-}$ or 1^{-+} with those of the quarks:

N produced hybrids are not expected to be exotic

FRIMENT

produced hybrids

can be exotic

Hall D at Jefferson Lab www.gluex.org

N

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010 N

Evidence for Exotic Hybrids

Data Candidates & Issues

LQCD Hybrid Predictions

State	Mass (GeV)	Width (GeV)
$\pi_1(1400)$	1.351 ± 0.03	0.313 ± 0.040
$\pi_1(1600)$	1.662 ± 0.015	0.234 ± 0.050
$\pi_1(2015)$	2.01 ± 0.03	0.28 ± 0.05
State	Production	Decays
$\pi_1(1400)$	$\pi^- p, \! ar p n$	$\pi^-\eta^\ddagger,\pi^0\eta^\ddagger$
$\pi_1(1600)$	$\pi^- p,\! ar p p$	$\eta^{\prime}\pi,\!b_{1}\pi,\!f_{1}\pi,\! ho\pi^{\ddagger}$
$\pi_1(2015)$	$\pi^- p$	$b_1\pi,f_1\pi$
State	Experiments	
$\pi_1(1400)$	E852, CBAR	
$\pi_1(1600)$	E852, VES, C	OMPASS, CBAR
$\pi_1(2015)$	E852	

- Low statistics
- Possible leakage due to acceptance issues or insufficient number of wave sets
- Interpretation of line shapes and phases
- Inconsistencies in production •
- Controversial decay channels •

Name	$\mathbf{J}^{\mathbf{PC}}$	Total Width MeV		Large Decays	
		PSS	IKP		
π_1	1^{-+}	81 - 168	117	$b_1\pi, ho\pi,f_1\pi,a_1\eta$	
η_1	1^{-+}	59-158	107	$a_1\pi, f_1\eta, \pi(1300)\pi$	
η_1'	1^{-+}	95-216	172	$K_1^m K,K_1^l K,K^* K$	
b_0	0^{+-}	247-429	665	$\pi(1300)\pi, h_1\pi$	
h_0	0^{+-}	59-262	94	$b_1\pi, h_1\eta, K(1460)K$	
h_0'	0^{+-}	259-490	426	$K(1460)K, K_1^l K, h_1\eta$	
b_2	2^{+-}	5 - 11	248	$a_2\pi,a_1\pi,h_1\pi$	
h_2	2^{+-}	4 - 12	166	$b_1\pi, \ \rho\pi$	
h_2'	2^{+-}	5 - 18	79	$K_1^m K,K_1^l K,K_2^* K$	

- **PSS** and **IKP** models •
- Different masses for hybrids ٠
- Width ranges vary •

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

Amplitude Analysis (PWA)

The analysis is based on the **isobar model** that assumes an intermediate 2π resonance

•Bump hunting in cross section data is inadequate to the task •Need PWA:

•Identify the J^{PC} of a meson using intensity and phase motion analysis

•Determine production amplitudes & mechanisms

•Include polarization of beam, target, spin and parity of resonances and daughters, relative angular momentum.

•*GlueX* experience:

•E852, Crystal Barrel, CLAS; new independent code has been developed

False Signals Revisiting $\pi_1(1600) \rightarrow \rho \pi$

A. R. Dzierba et al, Phys. Rev. D73 (2006) 072001

A new analysis of E852 data based on larger statistics and two different 3π modes comes to another conclusion. This new analysis is similar to the previous analysis but included additional waves.

Conclusion: Structure in the exotic wave disappears when one includes additional waves corresponding to decays of the $\pi_2(1670)$

Controversial Signal

- Intensity:
 - Breit-Wigner plus unknown background
- Phase difference:
 - Flat motion!
- $\pi_1(1600), \pi_2(1670)$:
 - Same mass and width!
- Feed-through into 1600 from stronger 1670 due to isobar model

- Phenomenology:
 - isobar model widely used in multi-particle $\pi N \rightarrow \pi \pi \pi N$ states; it is not completely general
 - factorized approach has limitations: e.g. Deck effect where we get a threshold peak in isobar π S-wave

Hall D Complex - Overhead View

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

www.gluex.org

PERIMENT

Hall-D: Linearly Polarized Photon Beam

CITATIONS

GLUE

Hall D at Jefferson Lab

www.gluex.org

The GlueX Detector

BCAL Schematics

LNF, Frascati, June 30, 2010

BCAL Highlights

Key component of the GlueX detector

- Crucial for reconstructing γ from π^0 and η resulting from decay mesons
- Provides timing information (neutrals/charged)
- With the CDC it provides charged particle PID
- It supplies secondary dE/dx

Geometry & Configuration

- Sampling calorimeter (11% sampling fraction)
- Based on KLOE Emcal design
- BCAL: ~25 tonnes

• The scintillating fibres have a polystyrene core which produces 8000 photons/MeV (*disputed*) and are blue-green, double clad (increases light captured by ~50%).

Machined module: 15,000 fibres

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

Decay Photon Distributions

- Pythia simulations
 - 27% of photons in FCAL
 - 71% of decay photons are captured by BCAL
 - 50% of BCAL ones have energies < 300 MeV
- Dynamic range: 0.04-3.5 GeV
- FCAL-BCAL: gap at 11^o

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010 GLUE

Hall D at Jefferson Lab www.gluex.org

Reconstruction Software

All Neutral Reconstruction

(by B.D. Leverington, UofR, now LNF!)

LNF, Frascati, June 30, 2010

First Reconstruction Pass

LNF, Frascati, June 30, 2010

Beam Test at Hall B - Sep 2006

Setup Photos

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

Contributions to Energy Resolution

• The dominant contribution to the energy resolution is the fluctuations in the energy sampling by the scintillating fibres.

•The properties of the scintillating fibres and coupling will affect the photon statistics contribution to the resolution.

Hall D at Jefferson Lab

www.gluex.of

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

BCAL Readout: GlueX sets SiPM Array Standard! 48 modules (phi sectors) γ r = 65 cm $(\pi^0 \text{ or } \eta \text{ decay})$ 16X₀ thick Sampling Fraction = 11% SensL SPMArray Hamamatsu MPPC CITATIONS Hall D at Jefferson Lab GLUE Z, Papandreou, U. of Regina www.gluex.org FRIMENT 30 LNF, Frascati, June 30, 2010

Readout Segmentation

Simulation

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

Design

SiPM Highlights – 2006-9

GlueX

Features of SiPMs:

- High gain APD (10⁶)
- Low bias voltage (~28V)
- Compact and stable
- Insensitive to magnetic fields
- Tolerant to excess light

Evolution at Regina/Jefferson Lab:

1x1mm² ...→ 3x3mm² (A35HD, η_{FF}=59%, 3640 microcells) ...→ Arrays

Mini

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

Micro

Array

SiPMMicro Performance - 2009

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

34

CITATIONS

PERIMENT

 $\Lambda\Lambda$

GLUE

Hall D at Jefferson Lab

www.gluex.org

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

www.gluex.org

PERIMENT

BCAL Construction QC/QA: Fibres

Kuraray SCSF-78MJ (780,000 Diam350 1.04 -Diam200 Spec Fibre Diamater (mm) fibres); chosen in late 2008 Diam050 1.02 diameters: within specs 1.00 0.98 Spec Spectra measured at Regina 0.96 qualitatively agree with 2 8 10 12 0 4 6 Kuraray's Shipment Number 0.30 • integrals are close, but shapes R: K02-3 / K: JS072 0.25 are different; response is acceptable and scales by 15 Relative Irradiance 10cm Linear Intensity 0.20 R: 30cm R: 100cm R: 300cm 0.15 10 distance in a similar fashion 10cm 30cm 0.10 K: 100cm K: 300cm 0.05 0.00 400 450 500 550 600 Wavelength (nm)

Fibre Attenuation Length

Attenuation Length Comparison

Z, Papandreou, U of Regina CAP Congress, June 2010

www.gluex.org

PERIMENT

Fibre Light Output

Light Output Comparison

GLUE

ERIMENT

Hall D at Jefferson Lab.

www.gluex.org

Matrix Construction Facility @ Regina

GLUING

QUALITY CONTROL AT EVERY STEP

PRESSING

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

Machined Modules 01-04

Excellent finish of end faces & transmission uniformity
Eight more modules have been built & are being machined

Module Delivery to JLab

Ready to leave Regina (April 22) Modules 01-04: 1st detector delivery for 12 GeV program! Modules 05-08: arrive at Jlab tomorrow

Z, Papandreou, U of Regina **CAP Congress, June 2010**

Hall D at Jefferson Lab www.gluex.org

Arrived at JLab

(April 26)

Summary

• The nature of confinement is an outstanding and fundamental question of quarks and gluons in QCD.

- LQCD and phenomenology suggest flux-tubes as the explanation.
- The excitation of the gluonic field leads to an entirely new spectrum of mesons as predicted by LQCD. Data are needed.
- **PWA** and improved theoretical understanding is required.
- The definitive experiment for this search will be GlueX at the energyupgraded JLab. If exotic hybrids are there, we will find them!
- **BCAL construction is on schedule; completion in spring of 2012.**
- Detector integration in 2013.
- Engineering data in 2014, Physics data in 2015.

We welcome new collaborators and students!

Acknowledgements

• Group members:

- K. Janzen, S. Katsaganis, B.
 Leverington, G. Lolos, Z. Papandreou,
 A. Semenov, I. Semenova, D. Kolybaba,
 plus <u>many undergraduates</u>
- A. Dzierba, Indiana University
- C. Meyer, Carnegie Mellon University
- J. Dudek, Jefferson Lab/ODU
- Bali, U. Glasgow
- D. Leinweber, CSSM / U. Adelaide
- Particle Adventure
- portal.gluex.org
- www.halld.org
- www.gluex.org

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

43

Regina & University

<u>Regina</u> •781 km from Edmonton •200,000 pop. •Negligible traffic •Home of the Riders

<u>UofR</u>

- •12000 full+part time
- •Facilities growth
- •Subatomic Physics Dept

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

Backup Slides

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

Hall D at Jefferson Lab www.gluex.org

45

Moments and PWA

Moments provide an arbiter for wave set sufficiency

$$H(LMN) = \int I(\Omega) D_{MN}^{L}(\Omega) d\Omega$$

compare moments calculated
from data and from PWA

$$\Delta^{2} = \frac{1}{n} \sum_{i}^{n} \frac{(H_{D} - H_{P})^{2}}{\sigma_{D}^{2} + \sigma_{P}^{2}}$$
Number of waves used in
old analysis - 21 waves
(low-wave set)
Number of waves used in
new analysis - 35 waves
(high-wave set)
Agreement with moments
better with high wave set.

$$\frac{\pi - \pi^{0} \pi^{0}}{\pi^{0}}$$

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

25

20

15

moment index

30

Ideal Photon Beam Energy 14

LNF, Frascati, June 30, 2010

Gain Balancing and Calibration

Important step: Gain balance all 36 PMTs
✓ Online: the means of the cosmic ADC spectra were balanced to within 10% during setup
✓ Offline:

- gain balance using dedicated cosmics runs
- energy calibration

• minimize the width of the difference between the tagged beam energy, E_{beam} and the reconstructed energy in the BCAL, E_{beal}

$$C_{N,i} = \frac{N_{ADC,i}}{N_{ADC,7}}$$

$$E_{BCAL} = K \cdot \sqrt{\left(\sum_{i=1}^{18} \frac{N_{ADC,i}}{C_{N,i}}\right) \cdot \left(\sum_{i=1}^{18} \frac{S_{ADC,i}}{C_{S,i}}\right)}$$

Hall D at Jefferson Lab

www.gluex.or

Z, Papandreou, U. of Regina LNF, Frascati, June 30, 2010

Number of Photo-Electrons

No. of photoelectrons important:

- Low energies: threshold
- SiPM versus FM PMTs (readout)

 $\begin{array}{l} Calibrated \ energies: \\ i^{th} \ segment, \ j^{th} \ energy \ bin \end{array}$

$$f(r) \approx \int P\left(x, N_{pe} \cdot \sqrt{R}\right) \cdot \frac{1}{r} \cdot P\left(\frac{x}{r}, \frac{N_{pe}}{\sqrt{R}}\right) \left[\frac{x}{r} dx\right]$$

Poisson-shape for amplitude spectra (r=N/S amplitude, R=N/S average)

 $z=0 \text{ cm } \& \theta = 90^{\circ}$

• better light guides

49

Silicon Photo-Multipliers (SiPM)

LNF, Frascati, June 30, 2010

Physics Plans

- Detector commissioning •
- Physics commissioning: density matrices, a₂(1320) ٠
- Exotic hybrid search •

Particle	J^{PC}	I	G	Possible Modes ^a
b_0	0^{+-}	1	+	
h_0	0^{+-}	0	-	$b_1\pi$
π_1	1-+	1	-	$ ho\pi, b_1\pi$
η_1	1^{-+}	0	+	$a_2\pi$
b_2	2^{+-}	1	+	$a_2\pi$
h_2	2^{+-}	0	_	$\rho\pi, b_1\pi$

^aAssuming the G = + channel $2\pi\eta$ or the G = - channels 3π or $2\pi\omega$.

• ss physics, baryon spectroscopy, ...

