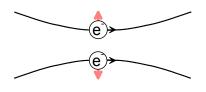
Exotic Mesons: Measurement Techniques, Recent Evidence and Future Searches

Colloquium at CUA Department of Physics

Igor Senderovich¹

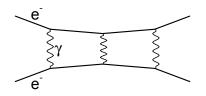
February 6, 2013

¹Igor.Senderovich@asu.edu

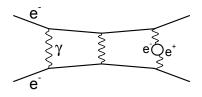

Outline

- Introduction
 - Fields, Quarks and Hadrons
 - Hadron Spectroscopy
- Partial Wave Analysis in Meson Spectroscopy
 - Essentials of PWA
 - PWA Example: $\rightarrow X \rightarrow b_1 \pi \rightarrow 5\pi$
- Experimental Search for Exotic Mesons
 - Evidence from Past Experiments
 - Future Experiments

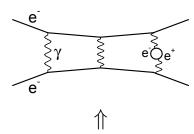
Outline


- Introduction

 - Hadron Spectroscopy
- - Essentials of PWA
 - PWA Example: $\rightarrow X \rightarrow b_1 \pi \rightarrow 5\pi$
- - Evidence from Past Experiments

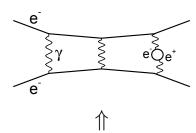

Classical view of interactions

- smooth field permeates space
- continuous change in momentum from resulting force
- deterministic outcome


Ouantum field view of interactions

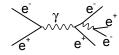
- field quanta (e.g. photons) distributed through space
- discrete momentum kicks from exchange of these force carriers
- probabilistic outcome from superposition of possible scattering states

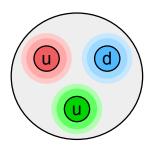
Ouantum field view of interactions


- field quanta (e.g. photons) distributed through space
- discrete momentum kicks from exchange of these force carriers
- probabilistic outcome from superposition of possible scattering states
- more than forces: particle creation/annihilation subtle but precisely calculated and confirmed effect in electrodynamics! (e.g. Lamb shift)

- e^+/e^- pair pulled out of vacuum! What else is in there?
- no longer safe to assume interactions occur in empty space

Ouantum field view of interactions

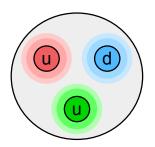

- field quanta (e.g. photons) distributed through space
- discrete momentum kicks from exchange of these force carriers
- probabilistic outcome from superposition of possible scattering states
- more than forces: particle creation/annihilation subtle but precisely calculated and confirmed effect in electrodynamics! (e.g. Lamb shift)


- e^+/e^- pair pulled out of vacuum!
 - What else is in there?
- no longer safe to assume interactions occur in empty space

Quantum field view of interactions

- field quanta (e.g. photons) distributed through space
- discrete momentum kicks from exchange of these force carriers
- probabilistic outcome from superposition of possible scattering states
- more than forces: particle creation/annihilation subtle but precisely calculated and confirmed effect in electrodynamics! (e.g. Lamb shift)
- new particles can also be liberated from the vacuum:

The Proton...


...turned out to have substructure!

Spin 1/2 "quarks": charge | I П Ш +2/3charm top up down strange bottom • A new theory, Quantum Chromodynamics (QCD), and 3 sets of charges proposed:

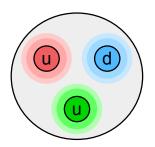
+	_
red	anti-red (cyan)
green	anti-green (magenta)
blue	anti-blue (yellow)

- All quark composites (hadrons) must end up "white"
- New force carrier (gauge boson): gluon
 - carries a pair of color charges!
 - couples to quarks and other gluons

The Proton...

...turned out to have substructure!

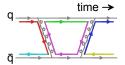
 • A new theory, *Quantum Chromodynamics* (QCD), and 3 sets of charges proposed:


+	_
red	anti-red (cyan)
green	anti-green (magenta)
blue	anti-blue (yellow)

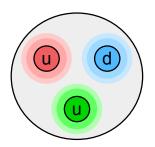
- All quark composites (hadrons) must end up "white"
- New force carrier (gauge boson): gluon
 - carries a pair of color charges!
 - couples to quarks and other gluons

Consider a simpler object: \Leftarrow quark-anti-quark pair, *i.e.* "meson" $(\pi^+ \text{ in this case})$

The Proton...


...turned out to have substructure!

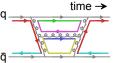
Spin 1/2 "quarks": charge | I П Ш +2/3**c**harm top up down strange bottom • A new theory, Quantum Chromodynamics (QCD), and 3 sets of charges proposed:


+	_
red	anti-red (cyan)
green	anti-green (magenta)
blue	anti-blue (yellow)

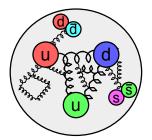
- All quark composites (hadrons) must end up "white"
- New force carrier (gauge boson): gluon
 - carries a pair of color charges!
 - couples to quarks and other gluons

The Proton...

...turned out to have substructure!


 $\begin{array}{c|cccc} \underline{Spin \ 1/2} \ ``quarks": \\ \hline charge & I & II & III \\ \hline +2/3 & up & charm & top \\ \hline -1/3 & down & strange & bottom \\ \end{array}$

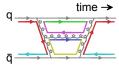
• A new theory, *Quantum Chromodynamics* (QCD), and 3 sets of charges proposed:


+	_
red	anti-red (cyan)
green	anti-green (magenta)
blue	anti-blue (yellow)

- All quark composites (hadrons) must end up "white"
- New force carrier (gauge boson): gluon
 - carries a pair of color charges!
 - couples to quarks and other gluons

The Proton...

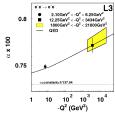
More complex view:


- valence quarks
- sea quarks
- proton mass, spin depend on the full dynamics!

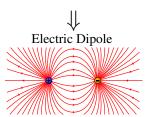
• A new theory, Quantum Chromodynamics (QCD), and 3 sets of charges proposed:

+	_
red	anti-red (cyan)
green	anti-green (magenta)
blue	anti-blue (yellow)

- All quark composites (hadrons) must end up "white"
- New force carrier (gauge boson): gluon
 - carries a pair of color charges!
 - couples to quarks and other gluons

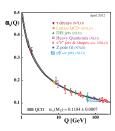


Coupling Strength


Electromagnetism (QED)

coupling constant: α

(fine structure constant)

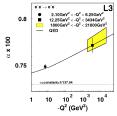


L3 Collab, Phys. Lett. B 623, 26 (2005)

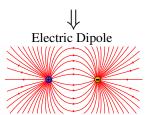
Strong Interaction (QCD)

coupling constant: α_s

Particle Data Group, 2012

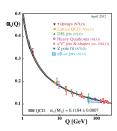


Coupling Strength

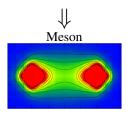

Electromagnetism (QED)

coupling constant: α

(fine structure constant)



L3 Collab, Phys. Lett. B 623, 26 (2005)



Strong Interaction (QCD)

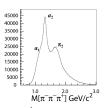
coupling constant: α_s

Particle Data Group, 2012

Introduction Overview

Concepts covered so far:

- Nature of Fields
 - fields are quantized with discrete interactions
 - beyond forces, give rise to interactions that can create particles
- Quarks and Their Composites Hadrons
 - protons, neutrons, and later discovered pions, kaons, etc. are composite objects
 - so far understood as made of 2 or 3 valence quarks, with important dynamics of surrounding fields, other quarks, etc.
- Quantum Chromodynamics a special interaction holding quarks together
 - uses *gluons* as carriers which themselves have charge \Rightarrow self-interacting!
 - gets stronger at larger distances!
 - field condenses into dense regions
 - strong but confined the condensed field vacates the rest of space

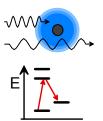

Probing Hadrons: Spectroscopy

How did we explore quantum mechanics and atomic systems in the early days? Spectroscopy!

- work out the bound states, their excitations, line shapes from theory
- compare to experimentally-measured spectrum

Doing the same for hadrons is fruitful but challenging \rightarrow

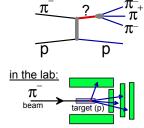
- strong coupling \Rightarrow no perturbative calculations possible How to cope?
 - build simpler models and try to calibrate to the full theory
 - numerical methods *lattice OCD*, but very computationally expensive
- short-lived ⇔ broad resonances hard to disentangle, identify states Solution: look at more than energy (mass) spectra
 - \rightarrow Partial Wave Analysis (PWA)
 - decomposition of scattered intensity into states with different angular distributions \Rightarrow get angular momentum q.n. of original states from angular correlations
 - determination of wave (amplitude) components gives phase


Hadron Spectroscopy Example

How do we do spectroscopy on hadrons? How does it compare with atomic/optical spectroscopy?

Atomic spectroscopy:

send in light, see at what frequencies the sample absorbs


ionize sample, detect emitted light (from discrete transitions)

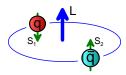
Hadron spectroscopy:

create a particle/resonance in collision, analyze it from debris

- only descendent particles are detected
- use energy/momentum conservation to reconstruct original system properties
- map out its c.o.m. energy (mass) spectrum

Excitation modes of bound particles teach us about the internal field.

But can we study the field more directly?



- Can a meson's condensed field (flux tube) vibrate?
- How would we detect/identify this?

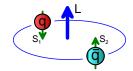
Mesons are identified by J^{PC} quantum numbers:

•
$$\vec{J} = \vec{L} + \vec{S}$$
, $\vec{S} = \vec{S_1} + \vec{S_2} = 0, 1$

- Parity: symmetry under space inversion; $P = (-1)^{L+1}$
- Charge conjugation: symmetry under matter/anti-matter inversion; $C = (-1)^{L+S}$

Excitation modes of bound particles teach us about the internal field.

But can we study the field more directly?



- Can a meson's condensed field (flux tube) vibrate?
- How would we detect/identify this?

Mesons are identified by J^{PC} quantum numbers:

•
$$\vec{J} = \vec{L} + \vec{S}$$
, $\vec{S} = \vec{S_1} + \vec{S_2} = 0, 1$

- Parity: symmetry under space inversion; $P = (-1)^{L+1}$
- Charge conjugation: symmetry under matter/anti-matter inversion; $C = (-1)^{L+S}$

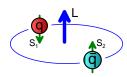
 $\therefore q\overline{q}$ quantum numbers:

J		++	-+	+-
0		0_{++}	0_{-+}	
1 2	1	1++		1+-
2	2	2^{++}	2^{-+}	

Excitation modes of bound particles teach us about the internal field.

But can we study the field more directly?

- Can a meson's condensed field (flux tube) vibrate?
- How would we detect/identify this?


Mesons are identified by J^{PC} quantum numbers:

•
$$\vec{J} = \vec{L} + \vec{S}$$
, $\vec{S} = \vec{S_1} + \vec{S_2} = 0, 1$

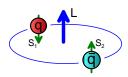
- Parity: symmetry under space inversion; $P = (-1)^{L+1}$
- Charge conjugation: symmetry under matter/anti-matter inversion; $C = (-1)^{L+S}$

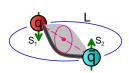
J		++	-+	+-
0	0	0_{++}	-	0_{+-}
1	1 2	1++	1^{-+}	1+-
2	2	2^{++}	2^{-+}	2^{+-}

Excitation modes of bound particles teach us about the internal field.

But can we study the field more directly?

- Can a meson's condensed field (flux tube) vibrate?
- How would we detect/identify this?


Mesons are identified by J^{PC} quantum numbers:


•
$$\vec{J} = \vec{L} + \vec{S}$$
, $\vec{S} = \vec{S_1} + \vec{S_2} = 0, 1$

- Parity: symmetry under space inversion; $P = (-1)^{L+1}$
- Charge conjugation: symmetry under matter/anti-matter inversion; $C = (-1)^{L+S}$

0	0	0_{++}	0_{-+}	0_{+-}
1	1	1++		
2	1 2	2++	2^{-+}	2^{+-}

Exotic states \Longrightarrow unambiguous signature of new degrees of freedom

Outline

- - Hadron Spectroscopy
- Partial Wave Analysis in Meson Spectroscopy
 - Essentials of PWA
 - PWA Example: $\rightarrow X \rightarrow b_1 \pi \rightarrow 5\pi$
- - Evidence from Past Experiments

Decay Amplitude Angular Distribution

Like a bound state, scattering/decay has some characteristic angular momentum.

Consider a P-wave (L = 1) decay \Rightarrow

Each decay like this samples the probability distribution given by this θ , ϕ -dependent amplitude.

 \therefore We should be able to get the L quantum number from the angular distribution of particles in a detector!

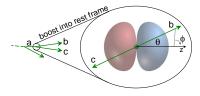


Figure: Illustration of a 2-body decay analysis.

Finding Original Amplitude: Maximum Likelihood Method

Goal: Find the most likely probability distribution to have generated your data.

Construct a likelihood function with:

- probability of having seen all the detected events $\vec{x}_1 \dots \vec{x}_N$:
- Poisson probability of having seen the number of detected events

$$\mathcal{L} = \operatorname{Pois}(\mu; \mathbf{N}) \prod_{i}^{N} P(\vec{x}_{i}; u_{1}, u_{2} \dots u_{n}) = \frac{e^{-\mu} \mu^{N}}{N!} \prod_{i}^{N} \frac{1}{\mu} \left| \sum_{\alpha}^{n} c_{\alpha} \Psi_{\alpha}(\vec{x}_{i}) \right|^{2}$$

 μ is the total expected in the detector, calculated via Monte Carlo i.e. sampling of events $\vec{y}_1 \dots \vec{y}_{N_{\text{gen}}}$ weighted by

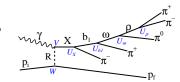
- candidate probability distribution
- detector acceptance

$$\Rightarrow \qquad \mu = \frac{1}{N_{\rm gen}} \sum_{i}^{N_{\rm acc}} \left| \sum_{\alpha}^{n} c_{\alpha} \Psi_{\alpha}(\vec{x}_{i}) \right|^{2}$$

Other methods exist, but in all cases, Monte Carlo samples computed with detector simulation are needed.

Example: simulated $\gamma p \to Xp \to b_1\pi p$

Let us simulate the following reaction:


$$\gamma p \to X p \to b_1^\pm \pi^\mp \to \omega \pi^\pm \pi^\mp p \to \pi^+ \pi^- \pi^0 \pi^\pm \pi^\mp p$$

with two amplitude components for resonance *X*:

$$J^{PC} = 1^{--}, \{M, \Gamma\} = \{1.89, 0.16\} \text{ GeV}$$

 $J^{PC} = 2^{+-}, \{M, \Gamma\} = \{2.00, 0.25\} \text{ GeV}$

This means generating 5-pion final state events according to the probability distribution of this production/decay process.

A variant of **GEANT** software is used to simulate flight of particles through the detector, and data acquisition.

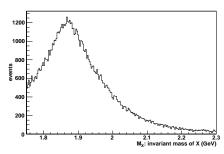
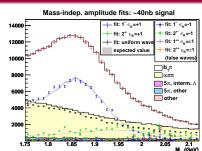
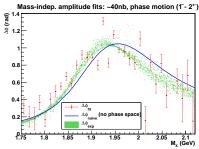


Figure : Resulting invariant mass distribution of the *X* resonance


Amplitude Fit Results: $40 \text{ nb } 2^{+-} \& \text{ Pythia (GlueX)}$


Cross-section scaling:

- Pythia, a particle event generator approximating the dominant known reactions is used to create background
 13.9 G evts @ 9 GeV photon beam energy ~ 260 h run time
- $b_1\pi$: 18 M evts $\sim 25\% 2^{+-}$

Conclusions:

- one can pull out the individual waves
- some leakage seen between waves

Outline

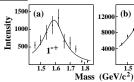
- - Hadron Spectroscopy
- - Essentials of PWA
 - PWA Example: $\rightarrow X \rightarrow b_1 \pi \rightarrow 5\pi$
- **Experimental Search for Exotic Mesons**
 - Evidence from Past Experiments

The tentative observations of exotic states thus far: (masses and widths from PDG)

π_1 state	Mass (GeV)	Width (GeV)	Prod.	Decays	Experiments
1400	1.351 ± 0.03	0.313 ± 0.040	$\pi^- p, \bar{p}n$	$\pi^-\eta$, $\pi^0\eta$	E852, CBAR
1600	1.662 ± 0.015	0.234 ± 0.050	$\pi^- p, \bar{p}p$	$\eta'\pi$, $b_1\pi$,	E852, CBAR, VES,
				$f_1\pi$, $\rho\pi$	COMPASS
2015	2.01 ± 0.03	0.28 ± 0.05	$\pi^- p$	$b_1\pi f_1\pi$	E852

The tentative observations of exotic states thus far: (masses and widths from PDG)

π_1 state	Mass (GeV)	Width (GeV)	Prod.	Decays	Experiments
1400	1.351 ± 0.03	0.313 ± 0.040	$\pi^- p, \bar{p}n$	$\pi^-\eta$, $\pi^0\eta$	E852, CBAR
1600	1.662 ± 0.015	0.234 ± 0.050	$\pi^- p, \bar{p}p$	$\eta'\pi$, $b_1\pi$,	E852, CBAR, VES,
				$f_1\pi$, $\rho\pi$	COMPASS
2015	2.01 ± 0.03	0.28 ± 0.05	$\pi^- p$	$b_1\pi f_1\pi$	E852


Background: Experiment E852 at Brookhaven's AGS.

 $18 \,\mathrm{GeV/c}~\pi^-$ beam on a liquid H_2 target

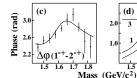

Reaction:
$$\pi^- p \to \pi^- \pi^+ \pi^- p$$

Figure:

- a) $\pi_1(1600) 1^{-+}$ wave
- b) the dominant $\pi_2(1670) 2^{-+}$ wave
- c) the relative phase
- d) individual phases:
 - 1. $1^{-+}[\rho(770)]P1^{+}$
 - 2. $2^{-+}[f_2(1270)]S0^+$
 - 3. relative production phase

The tentative observations of exotic states thus far: (masses and widths from PDG)

π_1 state	Mass (GeV)	Width (GeV)	Prod.	Decays	Experiments
1400	1.351 ± 0.03	0.313 ± 0.040	$\pi^- p, \bar{p}n$	$\pi^-\eta$, $\pi^0\eta$	E852, CBAR
1600	1.662 ± 0.015	0.234 ± 0.050	$\pi^- p, \bar{p}p$	$\eta'\pi$, $b_1\pi$,	E852, CBAR, VES,
				$f_1\pi$, $\rho\pi$	COMPASS
2015	2.01 ± 0.03	0.28 ± 0.05	$\pi^- p$	$b_1\pi f_1\pi$	E852

Background: Experiment E852 at Brookhaven's AGS.

18 GeV/c π^- beam on a liquid H_2 target

Reaction:
$$\pi^- p \to \pi^- \pi^+ \pi^- p$$

Figure:

- a) $\pi_1(1600) 1^{-+}$ wave
- b) the dominant $\pi_2(1670) 2^{-+}$ wave
- the relative phase
- individual phases:
 - 1. $1^{-+}[\rho(770)]P1^{+}$
 - 2. $2^{-+}[f_2(1270)]S0^+$
 - 3. relative production phase

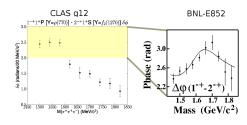
Reanalysis: $\times 10$ more data, more waves to describe $\pi_2(1670)$:

- $\pi_1(1600)$ enhancement vanishes
- phase motion persists!

The tentative observations of exotic states thus far: (masses and widths from PDG)

π_1 state	Mass (GeV)	Width (GeV)	Prod.	Decays	Experiments
1400	1.351 ± 0.03	0.313 ± 0.040	$\pi^- p, \bar{p}n$	$\pi^-\eta$, $\pi^0\eta$	E852, CBAR
1600	1.662 ± 0.015	0.234 ± 0.050	$\pi^- p, \bar{p}p$	$\eta'\pi$, $b_1\pi$,	E852, CBAR, VES,
				$f_1\pi$, $\rho\pi$	COMPASS
2015	2.01 ± 0.03	0.28 ± 0.05	$\pi^- p$	$b_1\pi f_1\pi$	E852

Background: CEBAF Large Acceptance Spectrometer (CLAS) at JLab


5.7 GeV photon beam on a liquid H_2 target

Reaction:
$$\gamma p \to (X)n \to \pi^+\pi^-\pi^+$$

Figure: No phase motion consistent with $\pi_1(1600) 1^{-+}$ resonance observed

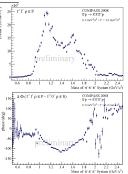
Possible explanations:

- $\pi_1(1600)$ production just suppressed in charge exchange
- small cross-section in photoproduction (contrary to models)

The tentative observations of exotic states thus far: (masses and widths from PDG)

π_1 state	Mass (GeV)	Width (GeV)	Prod.	Decays	Experiments
1400	1.351 ± 0.03	0.313 ± 0.040	$\pi^- p, \bar{p}n$	$\pi^-\eta$, $\pi^0\eta$	E852, CBAR
1600	1.662 ± 0.015	0.234 ± 0.050	$\pi^- p, \bar{p}p$	$\eta'\pi$, $b_1\pi$,	E852, CBAR, VES,
				$f_1\pi$, $\rho\pi$	COMPASS
2015	2.01 ± 0.03	0.28 ± 0.05	$\pi^- p$	$b_1\pi f_1\pi$	E852

Background: spectrometer at CERN's SPS with π , p, K (?) beams


190 GeV π^- beam on a liquid H_2 target

Reaction:
$$\pi^- p \to \pi^- \pi^+ \pi^- p$$

Figure:

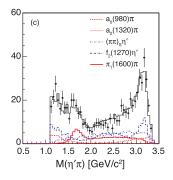
Top: exotic $1^{-+}\rho\pi$ P-wave invariant mass

Bottom: phase difference with a_1 1⁺⁺

The tentative observations of exotic states thus far: (masses and widths from PDG)

π_1 state	Mass (GeV)	Width (GeV)	Prod.	Decays	Experiments
1400	1.351 ± 0.03	0.313 ± 0.040	$\pi^- p, \bar{p}n$	$\pi^-\eta$, $\pi^0\eta$	E852, CBAR
1600	1.662 ± 0.015	0.234 ± 0.050	$\pi^- p, \bar{p}p$	$\eta'\pi$, $b_1\pi$,	E852, CBAR, VES,
				$f_1\pi$, $\rho\pi$	COMPASS
2015	2.01 ± 0.03	0.28 ± 0.05	$\pi^- p$	$b_1\pi f_1\pi$	E852

Background: CLEO-c @ Cornell e^+/e^- storage ring

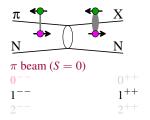

colliding e^+/e^- beams

Reaction:
$$e^+/e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{c1} \rightarrow \eta' \pi^+ \pi^-$$

Figure:

Amplitude invariant mass projections for $\chi_{c1} \rightarrow \eta' \pi^+ \pi^- \text{ decay}$

G. S. Adams et al. [CLEO Collaboration], Phys. Rev. D 84, 112009 (2011)


Using Photon Beams

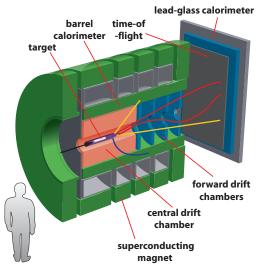
Data so far: production (mostly) with π beams Is the exotic hybrid production suppressed?

A possible argument: the spin flip needed for exotic q.n. is suppressed.

Proposal: use S = 1 beam \rightarrow photons!

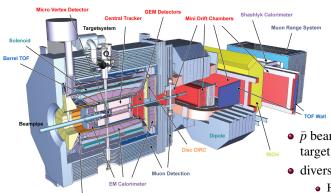
Meson J^{PC} q.n. production scenarios without quark spin flip (flux-tube model):

γ *	<u>X</u>
N O	N
γ beam ($S = 1$)	
0^{-+}	0^{+-}
1-+	1+-
2-+	2+-


Criticism:

- Spin flip suppression may not be an issue for light quarks
- Search by CLAS (g12) did not see a signal for $\pi_1(1600)$

Gluonic Excitations Experiment (GlueX)


GlueX detector is being assembled in the new Hall D in Jefferson Lab, Newport News, VA

- 9 GeV (tagged) polarized photon beam on liquid H₂ target
- hermetic, low dead time detector for high statistics angular analysis

Anti-Proton **An**nihilation at **Da**rmstadt (PANDA)

PANDA: a multi-purpose detector is being designed for the Facility for Antiproton and Ion Research (FAIR) project GSI, Darmstadt, Germany

- \bar{p} beam on a flexible jet/fixed target system
- diverse program:
 - Hadron Spectroscopy
 - Nucleon Structure
 - Hypernuclei

Igor Senderovich

Hadrons in-medium

Barrel DIRC

Summary

- Strong Interaction described by Quantum Chromodynamics: creates bound states that are difficult to study
- Overlapping resonances disentangled with Partial Wave Analysis, which yields states' quantum numbers and relative phases
- Hybrid Mesons (with excited flux tube identified by exotic quantum numbers) offer a new way to probe the dynamics of the gluon field
- Tantalizing hints of these from past experiments, particularly for $\pi_1(1600) 1^{-+}$ state
- A new generation of experiments coming online to study these with good coverage and high statistics:
 - GlueX with photo-production
 - PANDA through $p\bar{p}$ collisions