
Hall-D Online Data Challenge 2013 Report

David Lawrence1, Elliott Wolin1, and Sean Dobbs2

1Jefferson Laboratory, Newport News, VA
2Northwestern University, Evanston, IL

September 14, 2013

GlueX-doc-2287-v1

1 Introduction

An Online Data Challenge was performed in the Hall-D counting house the week of April
26, 2013 (see fig. 1). The scope of the challenge was to test the section of the online data
flow path that lies between the final stage Event Builder and the tape silo. The primary
goals were to test the online monitoring and level-3 (L3) trigger systems. A secondary goal
was to test the data transfer mechanism and rate from the counting house to the tape silo in
the Computer Center. Success was achieved for all tests with rates limited by the hardware
currently installed in the counting house. No major software or hardware design issues were
encountered, although several minor ones were identified. This document summarizes the
tests performed and the milestones achieved through preparing for and executing the Data
Challenge.

Figure 1: Exciting high-action shots of the Data Challenge underway.

1

2 Online Environment and System Accounts

Accounts were created on all counting house computers and the required software installed.
The configuration of using hdsys and hdops accounts for administration and operations
respectively as described in reference [1] was implemented. Software required for the Data
Challenge included:

• EVIO Package for reading and writing JLab custom binary data format

• ET Event Transfer system for efficiently moving event-based data buffers between
processes (locally or remotely)

• cMsg Message-based publish/subscribe interprocess communications package

• JANA Multi-threaded event processing framework for offline event reconstruction
and L3 framework

• sim-recon Hall-D Simulation and Reconstruction software

• Xerces-C, Cernlib, Root, curl Misc. packages required for building sim-recon

The computer consoles that provide the human interface to the counting house op-
erations were installed two weeks prior to the start of the online data challenge. These
consisted of five identical systems, each with a set of three monitors. Two of the monitors
were standard high-definition computer monitors while the third was a larger television
monitor connected via HDMI. The systems were configured such that all three monitors
formed a single desktop space where windows could be easily dragged between any of them.
The console computers themselves were dual core 3.2GHz Intel machines. Table 1 lists all
of the computers used for the Data Challenge.

Software was compiled using the GCC 4.8.0 compiler installed on the JLab CUE system
and managed by the Computer Center.

3 Raw Data Format and Translation Table

Data files used in the Data Challenge were generated using the bggen program, a PYTHIA-
based[2] program for generating hadronic events from the single pion threshold up to photon
energy end point (12GeV). The values were randomly smeared to give resolutions consistent
with expected detector resolutions. The values were then converted into digitized units and
written into an EVIO formatted data file using the mc2coda library provided by the JLab
DAQ group. The translation table that will be used to convert the crate, slot, channel
indexing to detector indexing was used to produce the files. We note that this is the actual
translation table that will be used during production operations.

2

Table 1: Computers used for the online data challenge

node type cores RAM function

gluon01a
gluon02 console
gluon03 3.4GHz Intel i5 2+2ht 16GB (human
gluon04 interface)
gluon05

gluon20
gluon21 1.9GHz AMD Opteron 8 8GB monitoring
gluon22
gluon23

gluon40
gluon41 1.9GHz AMD Opteron 8 8GB L3 trigger
gluon42 & monitoring
gluon43

gluon44 L3 trigger,
gluon45 2.53GHz Intel Xeon 8+8ht 48GB event source,

& monitoring server

gluon100
gluon101 1.9GHz AMD Opteron 8 8GB L3 trigger
gluon102
gluon103

halldraid1 2.0GHz Intel Xeon 4+4ht 12GB RAID disk

3

4 The Data Flow Architecture

Initial GlueX data taking includes multiple phases where the rate and volume of data will
be gradually ramped up[3]. The L3 trigger will not be required through phase III running
and only becomes a requirement for phase IV. The project plans, however, include building
in L3 infrastructure early on so as to make the implementation of L3 a smoother transition.
Therefore, the design of the data flow for the Hall-D DAQ system includes processes that
can easily add a L3 trigger filter. Figure 2 shows the design implemented for the Data
Challenge and what is anticipated for the final system. The system uses two ET systems
for transport of the data from the Event Builder (EB) to the Event Recorder as shown
in the upper half of the diagram. Two additional ET systems are used for monitoring
the pre-L3 and post-L3 event streams. Both of the ET systems that are dedicated to
monitoring read events from the remote ET systems via non-blocking stations. This means
that every event need not pass through the monitoring system. All other connections are
set to blocking mode which guarantees all events coming from the EB pass through a L3
process and into the ER. It also means that once an event gets into one of the monitoring
ET systems, it will be processed. The design choice to make the monitoring ET systems
run in blocking mode was to limit the rate that events are pulled from the EB and ER
systems for monitoring. This configuration limits those ET to ET transfer rates to what
the monitoring farms can handle. Specifying the L3 algorithm to use is done by specifying
which plugin the L3 process uses.

During the Data Challenge, the hdl3 program was used for L3. This program was
designed to write EVIO formatted output to either a file or an ET system.

4.1 Implementation of the L3 Trigger System

The design of the L3 system combined the ET system and JANA[4, 5]. As shown in figure
2, multiple L3 processes are used to transfer events from the EB to the ER. Each of these
is a JANA-based program running on a separate node. The JANA program itself is multi-
threaded and able to fully utilize the available CPU on the node in a single instance of
the process. The L3 trigger software mechanism works by creating a DL3Trigger object
for each event. The object contains a flag indicating whether the event should be kept,
discarded, or no decision could be made. The “no decision” option could be used to chain
different L3 algorithms together if desired.

4.2 Data Transfer to JLab Tape Silo

Events accepted by the L3 system were sent to an ET system on halldraid1. There a
process (et2evio) wrote the events to an output file with maximum length 10 GBytes (this
size is currently preferred by the GlueX Offline group). If the size limit was reached the
file was automatically closed and another open with a new file name that incorporated an
incremented sequence number.

4

L3	
 and	
 monitoring	
 architecture	

for	
 2013	
 Online	
 Data	
 Challenge	

EB	
 ER	

L3	
 and	
 monitoring	
 processes	

are	
 decoupled.	
 They	
 could	
 run	

on	
 same	
 nodes	
 though	
 if	

desired.	

gluon44* halldraid1

gluon45*

gluon100, gluon101,
gluon102, gluon103,

gluon40, gluon41,
gluon42, gluon43,
gluon44, gluon45

gluon23,
gluon40*,
gluon41*

gluon20,
gluon21,
gluon22

* node is running L3

Figure 2:

5

Note that we only wrote L3 accepted events to disk during part of the data challenge
to save disk space, and we did not save all the files (recall they contain multiple copies of
events from the monte-carlo input data file). In total we kept 1.4 TBytes of data from one
run on disk.

While writing the 1.4 TBytes we simultaneously copied 100 GBytes from halldraid1 to
the JLab tape silo. We initiated the copy manually, using jput from the hdops account,
simulating the action of the CRON job that would be running in a production environment.
The elapsed time for the copy was about half an hour, giving an average transfer rate of
about 50 MBytes/sec (recall in production we expect 300 MBytes/sec). We are currently
working with the JLab computer center to determine actual disk staging times and tape
writing times during that period.

Note that testing file transfer in this way does not simulate conditions expected during
production running very well. We used an old raid system (new one expected Fall 2013),
we used older tape drives (new drives on order have higher copy speeds), and we did not
run in the high-priority mode typically set up for running experiments. In other words our
disks were slow, the tapes were slow, and we only got low-priority access to the silo system
via the use of jput.

We are current planning a more realistic tape transfer test in early Fall 2013 using a
high-priority access mechanism and dedicated tape drives. We expect our new raid system
should be installed by then, and although we still will be using old tape drives, scaling up
to the new drive speeds should be straightforward.

5 The RootSpy System

The RootSpy system[6] uses ROOT object serialization and the cMsg message passing
architecture to provide a distributed architecture for accessing and collecting histogrammed
data. Generally, a JANA-based program is used to generate the histograms, and the
RootSpy client is loaded as a plugin, which then allows a master RootSpy program to view
or otherwise access these histograms.

For the Data Challenge, the monitoring histograms were generated by a series of plugins
corresponding to the various detector subsystems. Only histograms of low-level detector
information were generated, such as channel occupancies and timing information. The
filling of these histograms provided an important test of the analysis framework’s ability
to correctly parse and interpret the raw data format.

We divided the monitoring farm evenly into two parts, as illustrated in Fig. 2, in order
to separately monitor the events before and after L3 processing. As with the L3 system,
the JANA program is multi-threaded, so one program per node was run which utilized all
available CPU resources. The pre-L3 and post-L3 processes were run in separate cMsg
namespaces so that they could be viewed separately. We verified that the event rate
processed by the monitoring farm was the same as that being passes through the L3 system

6

at low event rates. When the event rate increased beyond the monitoring farm’s ability to
process events, we verified that the rate through the L3 system was not affected.

The histograms from the monitoring processes were viewed using the main RootSpy
program with a ROOT-based graphical interface (GUI) on the operator consoles. The
RootSpy GUI has the ability to view histograms generated by individual client proceses
or the summed histogram of multiple clients. Two different instances of the RootSpy GUI
were used to seperately view the pre-L3 and post-L3 monitoring histograms. We also
verified that we could monitor the histograms generated by the L3 system.

Figure 3 shows a screen capture of the RootSpy GUIs used for pre-L3 and post-L3
monitoring. The pre-L3 is on the left where the yellow filled area is a histogram from an
archive file, normalized to the “live” histogram drawn with the black points. This will
provide an easy visual to compare to previous runs to identify discrepancies. The post-L3
window is on the right in the figure and shows the occupancy of the BCAL for fADC hits.
The upstream end hits are shown in the top half and the downstream hits in the bottom
half. Module, layer, and sector numbers are as labeled.

Figure 3: RootSpy GUI screen capture taken during the Data Challenge. The window
on the left shows the pre-L3 monitoring while the window on the right shows the post-L3
monitoring. See text for more details.

7

5.1 RootSpy Archiver

Besides the monitoring of histograms during data taking, it is desirable to store the his-
tograms that are produced for later viewing and analysis. To accomplish this, we have
written a program that, when the end of a run is signaled, will collect all of the histograms
generated by the monitoring processes and writes them all out to an ROOT file which is
then archived in a common location on the file system. We successfully tested an initial
version of this program during the Data Challenge. Some work was also done to integrate
this program with the run control system that will be used during actual operations. As
this system is still in the early phase of its design, we expect that additional development
and testing will be done as the system matures.

6 Summary

Several important milestones were achieved as a result of the Data Challenge. These were:

• L3 trigger framework tested

- “pass-through” algorithm used with multiple nodes to achieve data rates at
network limits

- Boosted Decision Tree based algorithm from MIT group tested (with some
issues)

• Monitoring framework tested

• RootSpy tested on the user consoles that will be used for monitoring Hall-D experi-
ments online

• Archiving of monitoring histograms tested

• Link connecting Hall-D counting house and Computer Center tape silo tested:

- jput command used

- security certificate authentication

References

[1] Elliott Wolin and David Lawrence. Hall d daq software code management. Technical
Report GlueX-doc-1892-v1, Jefferson Lab, 2011.

[2] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. PYTHIA 6.4 Physics and
Manual. JHEP, 0605:026, 2006.

8

[3] GlueX Collaboration. Hall-d offline software status. Technical Report GlueX-doc-2017-
v2, 2012.

[4] D. Lawrence. Multi-threaded event processing with JANA, number 062 in PoS,
http://pos.sissa.it/archive/conferences/070/062/ACAT08 062.pdf, Nov 2008. SISSA.

[5] David Lawrence. The jana calibrations and conditions database api. Journal of Physics:
Conference Series, 219 part 4:(6pp), 2009 doi: 10.1088/1742-6596/219/4/042011.

[6] David Lawrence. Plan for monitoring histogram system in hall-d. Technical Report
GlueX-doc-1721-v1, Jefferson Lab, 2011.

9

