Measuring the charged pion polarizability in the $\gamma\gamma \rightarrow \pi^+\pi^-$ reaction

David Lawrence, JLab Rory Miskimen, UMass, Amherst Elton Smith, JLab

Motivation

- Electro (α_{π}) and Magnetic (β_{π}) Polarizabilities represent fundamental properties of the charged pion in the low-energy sector of QCD
- α_{π} and β_{π} are related to the charged pion weak form factors F_{V} and F_{A} :

$$\alpha_{\pi} = -\beta_{\pi} = \frac{4\alpha_{EM}}{m_{\pi}F_{\pi}^2} (L_9^r + L_{10}^r) \propto \frac{F_A}{F_V}$$

where the low-energy constants ${\rm Lr}_{_{10}}$ and ${\rm Lr}_{_{9}}$ are part of the Gasser-Leutwyler effective Lagrangian

- Measuring the polarizabilities of the charged pion can be used to test the even-parity part of the Chiral Lagrangian (as opposed to the odd-parity sector which is tested via anomalous processes such as π^o->γγ)
- Improved measurement of $\alpha_{\pi} \beta_{\pi}$ would reduce uncertainty contribution of hadronic light-by-light scattering to SM prediction of anomalous magnetic moment of the μ : $(g_{\mu}-2)/2$ (see K. Engel, H. Patel, M. Bamsey-Musolf, arXiv:1201.0809v2 [hep-ph]

(see K. Engel, H. Patel, M. Ramsey-Musolf, arXiv:1201.0809v2 [hep-ph] and arXiv:1309.2225 [hep-ph])

• Dispersion Relations have been used as well, but do not agree:

$$\alpha_{\pi} - \beta_{\pi} = 13.0^{+2.6}_{-1.9} \times 10^{-4} \text{ fm}^{3}$$

$$\alpha_{\pi} - \beta_{\pi} = 5.7 \times 10^{-4} \text{ fm}^{3}$$
Fil'kov et al. 2006*
Pasquini et al. 2008

10/26/13 Measuring the charged pion polarizability in the $\gamma\gamma \rightarrow \pi + \pi$ - reaction D. Law

Experimental Setup

Kinematics of Experiment

Backgrounds

- Experiment will measure reaction: ¹¹⁶Sn (γ , $\pi^+ \pi^-$) ¹¹⁶Sn (signal of interest: $\gamma \gamma^* \rightarrow \pi^+ \pi$)
- Primary backgrounds will be:
 - coherent ρ^{o} production followed by $\rho\text{->}\pi\pi$ decay
 - Will use angular distributions to separate Primakoff from coherent ρ^o production (see later slides)
 - Electromagnetic $\mu^+\mu^-$ production
 - Will use dedicated detector to identify hadron showers
- Other potentially relevant backgrounds include:
 - σ meson production (angular distributions same as Primakoff)
 - incoherent $\pi^+\pi^-$ production

— ...

Linear Polarization of incident photon beam helps distinguish Primakoff from coherent ρ^{o} production

Relating cross-section to α_{π} - β_{π}

Cross-section for $\gamma\gamma \rightarrow \pi^+\pi^-$ calculated based on two values of $\alpha_{\pi}^-\beta_{\pi}$:

 α_{π} – β_{π} = 13.0 x 10⁻⁴ fm³ (top, dotted line)

 α_{π} – β_{π} = 5.7 x 10⁻⁴ fm³ (solid and dashed lines)

Cross-section varies by ~10% for factor of 2 variation in α_{π} - β_{π}

Need measurement of $\sigma(\gamma\gamma \rightarrow \pi^+\pi^-)$ at few percent level

Rates/Acceptance/Errors

- 500 hours of running
 - 10⁷ tagged photons/second on 5% radiation length ¹¹⁶Sn target
 - PAC approved 25 days (20 for production, 5 calibration)
- $W_{\pi\pi}$ acceptance down to ~320 MeV/c²
- Estimated ~36k Primakoff events (not including detector acceptance)

Errors and correction factors	Correction	Statistical uncertainty
	factor	in correction factor
Overall statistical error		0.6 %
Normalization to $\mu^+\mu^-$ and relative trigger efficiency		1 %
$\mu^+\mu^-$ background in $\pi^+\pi^-$ yield	0.03~%	0 %
Polarization	70%	0.2~%
Pion identified as muon, and pion decay	8 %	1%
Total systematic error		1.5 %
Projected error in $\alpha - \beta$		10%

Error Budget

Summary

- Next to leading order ChPT prediction of $\alpha_{\pi}\text{-}\beta_{\pi}$ is 5.7 ± 1.0 x 10^-4 fm³
- Previous measurements of $\alpha_{\pi}\text{-}\beta_{\pi}$ range from 4.4 52.6 x $10^{\text{-4}}~\text{fm}^{3}$
- A newly approved experiment to measure the charged pion polarizability α_{π} - β_{π} via the $\gamma\gamma^*$ -> $\pi^+\pi^-$ reaction will be done using the GlueX detector at Jefferson Lab
 - PR12-13-008
- Total estimated uncertainty in $\alpha_{\pi}\text{-}\beta_{\pi}$ measurement is 10% (+/- 0.6 x 10^{-4} fm^3)
- An improved measurement of α_{π} - β_{π} would improve the SM prediction of the anomalous magnetic moment of the μ : $(g_{\mu}$ -2)/2

The GlueX Detector in Hall-D

New Proposal will use GlueX detector in Hall-D:

- Linearly polarized photon source (~9GeV)
- 2T solenoidal magnetic field ($\delta p/p = \text{few \%}$)
- Drift chambers
- High resolution Time-of-flight detector

Modifications to standard GlueX setup:

- Replace LH2 target with thin Pb target
- Move target upstream to improve low-angle acceptance

Alternate start-counter? ٠

Anomalous magnet moment of the μ : (g_µ-2)/2

- Experimental uncertainty of ~ 63 x 10⁻¹¹
- SM calculation has uncertainty of ~ 49 x 10^{-11}
 - Hadronic light-by-light (HLBL) scattering is one of two major contributors to SM uncertainty (other is hadronic vacuum polarization)
 - π polarizability is potentially significant contribution to HLBL that is currently omitted from current SM calculation
- g-2 collaboration at Fermilab is preparing a measurement that will reduce experimental uncertainty by a factor of 4
- A measurement of the π polarizability could help reduce the SM uncertainty significantly

For detailed info on planned Fermi-lab experiment, see http://gm2.fnal.gov/public_docs/proposals/Proposal-APR5-Final.pdf