
A Version Management System for GlueX
GlueX Note 2793-v1

Mark M. Ito
Jefferson Lab

August 21, 2015

Abstract

A system for building and managing GlueX software is described. The
goal is to insulate the user from the need to the master details of build-
ing each of several software packages and from the detials of setting up a
working environment, while maintaining multiple versions of each of sev-
eral packages simultaneously. Particular combinations of package versions
can be specified succintly in an XML configuration file and this file can
be used both to guide a complete build of all needed packages and to set
up the shell environment to use such a build.

Contents

1 Introduction 2

2 The Packages 2

3 The Directory Structure 3

4 Scripts to Implement the VMS: the BUILD SCRIPTS Direc-
tory 4

5 Setting Up the Shell Environment 4
5.1 Low-Level Environment Set-Up: gluex env.(c)sh 4

5.1.1 Pre-Defined Home Variables and Defaults 5
5.1.2 Consistency Checking 5
5.1.3 Cleaning the Environment: gluex env clean.(c)sh 5

5.2 High-Level Environment Set-Up 5
5.2.1 Custom Scripts . 5
5.2.2 Using the Versioning System 6

6 The Build System 6
6.1 The Makefiles . 6

6.1.1 The Top-Level: Makefile all 7
6.1.2 Individual Package Targets 7

1

6.2 The Package Makefiles . 7
6.3 Adding New Package Builds to an Existing Tree 8

6.3.1 Use the Top-Level Makefile all 8
6.3.2 Use Individual Package Makefiles 8

7 The Versioning System 9
7.1 Version File Format: an XML 9
7.2 Setting Up the Environment with a Version File 9
7.3 Specifying Alternate Source Code Sources with a Version

File . 10
7.4 Directory Tags . 11

8 The Prerequisites System 11

9 The gluex install System 12
9.1 Installation Steps . 12
9.2 Using the Build . 13

1 Introduction

There are three fundamental areas of concern that make up all software
systems. They are:

1. a directory structure

2. a build system

3. a version management system

They are all related, aspects of one affects aspects of each of the others.
Having a standard system makes collaborative work more efficient,

especially when one needs help from others to solve a problem.

2 The Packages

There are several software components that are needed to build and use
GlueX software. Most of them are assumed to be provided by the native
operating system or distribution, but there are some that have to be built
by the GlueX user. They are:

1. build scripts: scripts to manage building and the shell environment

2. Xerces-C: for reading XML files

3. CERNLIB: to support GEANT 3 simulations

4. GEANT4: simulation engine

5. ROOT: general purpose HENP toolkit

6. EVIO: CODA format data handling library

7. CCDB: Calibration Constants Database

8. JANA: event-based analysis framework

9. HDDS: detector geometry specification library

2

gluex_top

|-- build_scripts

|-- cernlib

| ‘-- 2005

|-- evio

| |-- evio-4.2

| ‘-- evio-4.3.1

|-- hdds

| |-- hdds-3.1

| ‘-- hdds-3.2

|-- jana

| |-- jana_0.7.2

| ‘-- jana_0.7.3

|-- root

| |-- root_5.34.04

| ‘-- root_5.34.26

|-- sim-recon

| |-- sim-recon-1.2.0

| ‘-- sim-recon-1.3.0

‘-- xerces-c

|-- xerces-c-3.1.1

‘-- xerces-c-3.1.2

Figure 1: The directory structure.

10. sim-recon: simulation and reconstruction for GlueX

Detailed description of these packages will not be given here; please
see the GlueX Offline Software wiki page for more information.

There are in general multiple versions (releases) of each of these pack-
ages and it is often convenient to have access to more that one version of
a package built and available for use. In addition some packages depend
on one or several others for libraries and include files.

3 The Directory Structure

The VMS directory structure supports multiple versions of each package.
For an example see Fig. 1. In the figure, “gluex top” is a generic name,
each installation may choose a different directory name. VMS looks for
the name of this directory in the environment variable GLUEX TOP.

Under gluex top, each package has its own container directory (e. g.,
jana, hdds, sim-recon) and for each package container directory one or
more specific versions of that package are built.

3

Package Home Directory Variable
Xerces-C XERCESCROOT

CERNLIB CERN

Geant4 GEANT4 HOME

ROOT ROOTSYS

EVIO EVIOROOT

CCDB CCDB HOME

JANA JANA HOME

HDDS HDDS HOME

sim-recon HALLD HOME

Table 1: Packages and their home directories.

4 Scripts to Implement the VMS: the BUILD SCRIPTS

Directory

All scripts and makefiles to support VMS are found the in the build scripts

directory. At JLab, the full path is

/group/halld/Software/scripts/build scripts.

The directory can also checked out from the Subversion repository:

https : //halldsvn.jlab.org/repos/trunk/scripts/build scripts.

Many of the scripts and makefiles described in this note require that the
environment variable BUILD SCRIPTS be defined and point to an instance
of this directory.

5 Setting Up the Shell Environment

Facility is provided for setting environment variables necessary both for
building the software and for using it. Both Bourne-shell-like and C-shell-
like shells are supported, but real testing has only been done with bash
and tcsh. In the following all examples will be appropriate for bash. Note
that whenever a script like foo.sh is mentioned, there is also a foo.csh in
the build-scripts directory.

5.1 Low-Level Environment Set-Up: gluex env.(c)sh

The gluex env.(c)sh script will define all environment variables needed
to run and build GlueX software. It takes as input the home directories
of each package as found in the environment variables listed in Table 1.

Given the home directory of a package there may or may not be
other environment variables that need to be set, those variables derived
from the value of home. gluex env.(c)sh takes care of this. For exam-
ple, XERCES INCLUDE is used in the build system and must be defined as
$XERCESCROOT/include. Directories containing binaries must be added

4

to the PATH variable and similarly for LD LIBRARY PATH, and PYTHONPATH.
For these path variables directories are always added at the front with
any pre-existing directories maintained on the list.

5.1.1 Pre-Defined Home Variables and Defaults

If GLUEX TOP is defined in advance, the pre-defined value will be used. If
not it will be defined as /usr/local/gluex.

If BUILD SCRIPTS is defined in advance, again the pre-defined value will
be used. If not defined it will be defined as $GLUEX TOP/build scripts.

If any of the home directories are defined before sourcing gluex env.(c)sh,
those values will be respected. If any are not defined, then a default will
be provided, usually the prod directory in the package container direc-
tory. Because of this behavior, the user can define as many or as few of
the home directories as desired in advance of sourcing gluex env.(c)sh,
letting the script finish the environment settings keying off of the user
definitions (or lack thereof). The user is thus only responsible for setting
the values of desired home directories. A side effect of this behavior is
that the environment that results is non-determininistic in the sense that
the result depend on the values of pre-existing home directory variables.
Different initial conditions will give different environments.

5.1.2 Consistency Checking

The final step in gluex env.(c)sh is to check the resulting environment
for consistency using the prerequisites system. Each home directory is
checked for a prerequisites version file. Those files list versions of prereq-
uisite packages used at build time. The build-time version are checked
against the versions used in the just-set-up environment and warnings are
printed when mismatches are detected. See Section 8 for the details.

5.1.3 Cleaning the Environment: gluex env clean.(c)sh

Since gluex env.(c)sh is sensitive to definitions hanging around in the en-
vironment, there is a script provided that will undo all GlueX-related def-
initions: gluex env clean.(c)sh. Sourcing it will eliminate unintended
consequences from previously made definitions. For the path variables the
script only removes the GlueX-related elements leaving all others present
in the path.

5.2 High-Level Environment Set-Up

5.2.1 Custom Scripts

The most common reason to have a custom script is when you want to
use a package that is outside the standard directory structure. Since
gluex env.(c)sh will respect a pre-defined value of any of the home direc-
tories, this can be done without making a private version of gluex env.(c)sh.
See Fig. 2 for an example. Here a version of sim-recon built in a non-
standard location (the user’s home directory) will be used in the resulting
enviroment.

5

export GLUEX_TOP=/home/gluex/gluex_top

export BUILD_SCRIPTS=$GLUEX_TOP/build_scripts

export HALLD_HOME=/home/username/sim-recon

source $BUILD_SCRIPTS/gluex_env.sh

Figure 2: Example of a custom set-up script. The build of sim-recon in the
user’s home directory will be used. All other packages be set up to use with
their default builds under /home/gluex/gluex top. Note that GLUEX TOP and
BUILD SCRIPTS are defined explicitly rather than letting them default.

export GLUEX_TOP=/home/gluex/gluex_top

export BUILD_SCRIPTS=$GLUEX_TOP/build_scripts

source $BUILD_SCRIPTS/gluex_env_version.sh \

/home/username/my_versions.xml

Figure 3: Example of a set-up script driven by a private version file. See Sec-
tion 7 for the format of the file.

5.2.2 Using the Versioning System

Another way to get a non-default environment is to use the versioning
system to set home directory locations which in turn are respected by
gluex env.(c)sh. The versioning system is described in detail in Sec-
tion 7, but an example set-up script is shown in Fig. 3. Here package
version information is contained in the XML file my versions.xml in the
user’s home area. An example version file is shown in Fig. 4.

6 The Build System

Each of the packages have their own native build system and each build
system has its own set of details that have to be understood. In addition,
the technology used to do the build varies from system to system. It
may be make, imake, cmake, Scons, or something else. The VMS system
makes a choice of build options for each package so that the user need not
master these details.

6.1 The Makefiles

The VMS build system is implemented in GNU Make. These makefiles
invoke the natice package-specific build system. There is a “package make-
file” for each package (e. g., Makefile jana, Makefile sim-recon). In-
voking make with a package makefile will build that package with the
home directory placed in the current working directory. Thus, the pack-
age makefiles have no knowledge of the directory structure within which
they are used; they just build locally.

6

6.1.1 The Top-Level: Makefile all

Complete builds are orchestrated by Makefile all. The highest-level tar-
gets of Makefile all, shown with their depedencies are:

all: env xerces_build cernlib_build root_build clhep_build \

geant4_build gsl_build evio_build ccdb_build jana_build \

hdds_build sim-recon_build

gluex: env xerces_build cernlib_build root_build clhep_build \

evio_build ccdb_build jana_build hdds_build \

sim-recon_build

gluex_jlab: env xerces_build root_build clhep_build evio_build \

ccdb_build jana_build hdds_build sim-recon_build

The all target builds every package that Makefile all knows about.
The gluex target builds only the packages necessary for using GlueX
software. The gluex jlab target is the same as gluex except that it does
not include cernlib build (useful for JLab public builds where we use
the community-built versions of CERNLIB).

Makefile all should always be invoked from the $GLUEX TOP directory.

6.1.2 Individual Package Targets

Each of the individual package targets (e. g., evio build and hdds build)
use the corresponding package makefile. Directories are created and the
package makes are executed in way that gives the directory structure
described in Section 3. To do this, the package container directory is
created if it does not exist and the requested package makefile is invoked
from within the package container directory.

Of course, each individual package build target can be invoked directly.
More on this in Section 6.3

6.2 The Package Makefiles

Each of the package makefiles is sensitive to environment variables that
control which version of the package to build. The makefiles themselves
take care of obtaining the source code.

Each packages respects a version-specifying environment variable. Here
is an example of how they might be set in the C-shell:

setenv JANA_VERSION 0.7.2

setenv SIM_RECON_VERSION 1.2.0

setenv HDDS_VERSION 3.2

setenv CERNLIB_VERSION 2005

setenv XERCES_C_VERSION 3.1.1

setenv CLHEP_VERSION 2.0.4.5

setenv ROOT_VERSION 5.34.26

setenv CCDB_VERSION 1.05

setenv EVIO_VERSION 4.3.1

7

In each case there is standard system for distributing tarballs marked
with the version name. Each package has different conventions, but
the package makefiles have that knowledge of the appropriate convention
coded in. Also, the name of home directory created depends on the name
that appears in the tarball (with exceptions as mentioned in Section 7.4.
Note that the version variable can be set on the make command line as
well.

Some packages can be checked out from a Subversion repository. In
these cases, the version variable is ignored. JANA, HDDS, and sim-recon
have this support. So for example:

setenv HDDS_URL https://halldsvn.jlab.org/repos/trunk/hdds

will cause the HDDS makefile to check out the trunk version. The
names of the variables for JANA and sim-recon are JANA URL and SIM RECON URL

respectively.

6.3 Adding New Package Builds to an Existing
Tree

There are two ways:

6.3.1 Use the Top-Level Makefile all

After setting the desired values of the version environment variables and/or
the URL environment variables (see Section 6.2 you can invoke Makefile all

with the target(s) needed or with a high-level target like gluex,

cd $GLUEX_TOP

make -f $BUILD_SCRIPTS/Makefile_all gluex

If some of the versions of individual packages requested already exist, then
make will do the usual thing: try to remake them and find that there is
nothing to do.

6.3.2 Use Individual Package Makefiles

Since the individual package makefiles build in the local directory, they
can be used directly by going to the appropriate container directory. For
example,

cd $GLUEX_TOP/sim-recon

make -f $BUILD_SCRIPTS/Makefile_sim-recon SIM_RECON_VERSION=1.4.0

Note that in this example the version is specified on the make command
line rather than through an environment variable. That is not necessary;
it is an option supported by make and defining SIM RECON VERSION in the
environment would work as well. Also note that doing the build in the
sim-recon container directory is not necessary for the build to succeed;
any directory will work. In this example however we are adding to an
existing standard directory structure so we cd to the standard directory.

8

<gversions>

<package name="jana" version="0.7.3"/>

<package name="sim-recon" version="1.4.0"/>

<package name="hdds" version="3.3"/>

<package name="cernlib" version="2005" word_length="64-bit"/>

<package name="xerces-c" version="3.1.1"/>

<package name="clhep" version="2.0.4.5"/>

<package name="root" version="5.34.26"/>

<package name="ccdb" version="1.05"/>

<package name="evio" version="4.3.1"/>

</gversions>

Figure 4: An example version file. version 1.7.xml is shown.

7 The Versioning System

7.1 Version File Format: an XML

The versioning system uses an XML-formatted version file to specify both
package version information and package home directory definition in the
shell environment. An example file is shown in Fig. 4.

There is only one type of element, the package. Attributes are:

name: The name of the software package.

version: The version number of the package.

url: A URL to be used to checkout (Subversion) or clone (Git) the code.
The URL should point to an appropriate repository.

branch: When using a Git repository, the branch to be checked out.1

dirtag: A string (directory tag) to be appended to the standard direc-
tory name of the package when it is built.

7.2 Setting Up the Environment with a Version
File

As we saw in Section 5.1, environment setting via gluex env.(c)sh is
sensitive to the definition of the package home variables. In Section 6.2,
we saw that the package makefiles are sensitive to either the version-
defining environment variables or the URL-defining environment variables
to choose the version of code to build. The version file can be used to
define both classes of variables. In this way it can be used to both build a
consistent set of packages and to set-up the environment to use the build.
Executing

$BUILD_SCRIPTS/version.pl version_1.7.xml

where for the purposes of this example version 1.7.xml is the file shown
in Fig. 4 and GLUEX TOP is /home/gluex/gluex top, creates the output

9

setenv JANA_VERSION 0.7.3;

setenv JANA_HOME \

/home/gluex/gluex_top/jana/jana_0.7.3/Linux_RHEL7-x86_64-gcc4.8.3;

setenv SIM_RECON_VERSION 1.4.0;

setenv HALLD_HOME /home/gluex/gluex_top/sim-recon/sim-recon-1.4.0;

setenv HDDS_VERSION 3.3;

setenv HDDS_HOME /home/gluex/gluex_top/hdds/hdds-3.3;

setenv CERNLIB_VERSION 2005;

setenv CERN /home/gluex/gluex_top/cernlib;

setenv CERN_LEVEL 2005;

setenv CERNLIB_WORD_LENGTH 64-bit;

setenv XERCES_C_VERSION 3.1.1;

setenv XERCESCROOT /home/gluex/gluex_top/xerces-c/xerces-c-3.1.1;

setenv CLHEP_VERSION 2.0.4.5;

setenv CLHEP /home/gluex/gluex_top/clhep/2.0.4.5;

setenv ROOT_VERSION 5.34.26;

setenv ROOTSYS /home/gluex/gluex_top/root/root_5.34.26;

setenv CCDB_VERSION 1.05;

setenv CCDB_HOME /home/gluex/gluex_top/ccdb/ccdb_1.05;

setenv EVIO_VERSION 4.3.1;

setenv EVIOROOT /home/gluex/gluex_top/evio/evio-4.3.1/Linux-x86_64;

Figure 5: Output of $BUILD SCRIPTS/version.pl.

shown in Fig. 5. Since you would want these commands applied to the
current shell level, in practice you use

eval ‘$BUILD_SCRIPTS/version.pl version_1.7.xml‘

Following this step, one normally would invoke gluex env.(c)sh to com-
plete the set-up of the environment.

In this example, the variable definitions come (mostly) in pairs, a ver-
sion variable and a home directory variable. The version variable affects
only the build process since the corresponding package makefile keys off it
(see Section 6.2). The home directory variable affects the build as well in
that it tells the package makefile where to find any prerequistite packages
and in addition it affects use of a build via its effect on path variables.

Finally, the script gluex env version.(c)sh combines use of version.pl
and gluex env.(c)sh to more conveniently set up the environment. We
have already seen an example of its use in Fig. 3. The script uses version.pl
as shown above to set the stage for an invocation of gluex env.(c)sh.

7.3 Specifying Alternate Source Code Sources with
a Version File

We saw in Section 6.2 that a URL variable can be used to instructed the
package makefiles to get the source code from a version control repository
rather downloading a tarball. The url attribute in the package element

1Not yet implemented; at this writing the master branch will always be checked out.

10

calls out the value of the URL to use directly. In a particular package

element, either the version attribute or the url attribute should appear,
never both. If the url attribute is used, each package makefile will inter-
pret the URL as is appropriate for that package, either as a Subversion
repository or a Git repository; there can be only one answer and it is coded
into the package makefile. For Git repositories, the optional branch at-
tribute controls which branch is checked out. If it is absent, the master
branch is used. Note that for Subversion repositories, branch specification
is done via the URL itself.

7.4 Directory Tags

The dirtag attribute can be used to distinguish different builds of a pack-
age where the only difference between them is the version(s) of one or more
prequisite packages. The string used is arbitrary. A directory tag can be
attached to either a source directory made from a tarball or one from a
source code repository. The tag name is appended after a caret symbol
()̂, for example,

<package name="hdds" version="3.3" dirtag="xerces_test"\>

in a version file would cause version.pl to add an additional variable to
the environment:

setenv HDDS_DIRTAG xerces_test

and Makefile hdds would then produce a directory named hdds-3.3x̂erces test,
with source code obtained from the standard tarball, hdds-3.3-src.tar.gz
in this case.

The corresponding home directory variable will also reflect the direc-
tory tag, of course.

There are a lot possible meanings for the directory tag. It could mark
different combinations of prerequisites as well as designating packages
where the source code does not come from a standard source (tarball
or repository). Because of the large number of possibilities, the form of
the tag string is left to the user; no assumption is made about it meaning.

8 The Prerequisites System

Each package may or may not have a build dependency on other packages
under the VMS. For example a particular version of sim-recon can be built
against any of a number of versions of HDDS, including custom versions
provided by the user. To insure that the environment being set-up has a
consistent set of package versions, a facility is provided to warn the user
if possible inconsistencies are detected.

At build time, a version xml file is created in the home directory of a
package if that package has dependencies on others in the system. For ex-
ample, $HALLD HOME will have the file sim-recon prereqs version.xml,
listing the versions used to build sim-recon. An example is shown in Fig. 6

At set-up time, when gluex env.(c)sh is invoked, if a version file with
prerequisites is found in the package home directory, then each package
in that file is checked for version consistency. A match is sought between

11

<gversion version="1.0"

><package name="evio" version="4.3.1"

/><package name="cernlib" version="2005"

/><package name="root" version="5.34.26"

/><package name="jana" version="0.7.3"

/><package name="hdds" version="3.3"

/><package name="ccdb" version="1.05"

/></gversion

>

Figure 6: An example of sim-recon prereqs version.xml.

the version number specified in the version file and the version number
encoded in the home directory for the prerequisite package, i. e., the
directory defined as home in the environment being set-up. Here the
version from the home directory is extracted in two ways depending on
how the package was built:

1. Tar File. If the source code came from a tar file, then the version
number is parsed out of the name of the home directory.

2. Subversion Checkout. If the source was checked out of a subver-
sion repository, the svn info command is used to get the name of
the subversion directory checked out and the version is parsed from
that directory name.

If a version mismatch is found, a warning is written to the screen.

9 The gluex install System

Independent of the build scripts directory, the gluex install system
uses build scripts to create a complete install of GlueX software from
scratch. This is especially useful for new machines.

No interaction from the user should be required to get a successful
build. The only assumption made is that the basic packages that come
in a minimal install are present. The definition of minimal depends on
the installation. In all cases, the distribution was tested by first installing
from a DVD or CD iso image. Typically, the “live DVD” version was
chosen since that installs the smallest number of packages.

The scripts have been tested on the following distributions listed in
Table 2.

9.1 Installation Steps

Root access is required for steps (1) and (2).

1. System Update. It is recommended that you update your system
to the latest versions of of all system supplied software. For RedHat-
like distributions you do a “yum update”. For Debian-like systems
you do a “apt-get update”.

12

Distribution Package Type
CentOS RedHat
Scientific Linux RedHat
Ubuntu Debian
Fedora RedHat
LinuxMint Debian
openSUSE RedHat
RedHat Enterprise RedHat

Table 2: Gluex install tested distributions.

2. Get the Scripts. A tar file with these scripts is available at

https://halldweb.jlab.org/dist/gluex_install.tar

You can also do a subversion check out of the latest version at

https://halldsvn.jlab.org/repos/trunk/scripts/gluex_install

Note that most distributions do not have subversion in their minimal
set of packages.

3. Prerequisites: gluex prereq <distribution>.sh. The prereq-
uisites script installs packages from the distribution repository nec-
essary for the GlueX build. As such, it must be executed by root.
In addition it makes some symbolic links in system directories that
are necessary for the cernlib build. These scripts are specific to
particular distributions. You must run this script from inside the
“gluex install” directory created when you get the scripts (see Get
the Scripts, step 2).

4. Subversion test: svn touch.sh. Simply does an “l” of the Hall
D and 12 GeV subversion repositories at JLab, both as a test and
to dispense with interactive prompts asking about certificates from
the servers. Respond with “p”, to permanently accept the certifi-
cates. These prompts would otherwise hang the build. If you are
not prompted, you already recognize the certificates. The script is
distribution independent.

5. Install: gluex install.sh. Creates a directory, “gluex top”, in the
current working directory to house the build, sets up an environ-
ment, downloads all source files, and builds all libraries and executa-
bles needed to run GlueX software. The install assumes a directory
structure that accomodates multiple versions of the GlueX packages
if they are needed later. The script is distribution independent.

9.2 Using the Build

After the build is complete, there are two files in the gluex directory,
setup.sh and setup.csh, that can be used to set-up the complete GlueX
environment under Bourne-like shells or C-like shells respectively.

13

