
Build Scripts: A Version Management System for GlueX
GlueX-Doc-2793-v24

Mark M. Ito
Jefferson Lab

May 5, 2021

Abstract

Build Scripts, a system for building and managing GlueX software, is described. The goal is
to insulate the user from the need to the master details of building each of several software packages
as well as from the details of setting up a working environment. Multiple versions of each of several
packages can be maintained simultaneously. Particular combinations of package versions can be
specified succinctly in an XML configuration file and this file can be used both to guide a complete
build of all needed packages and to set up the shell environment to use the resulting build.

Contents

1 Introduction 2

2 Getting Started 2
2.1 Getting a Copy of Build Scripts . 3

2.1.1 Pre-Installed at JLab . 3
2.1.2 Pre-Installed Outside JLab . 3
2.1.3 Install via zip or tar file . 3
2.1.4 Clone from GitHub . 3

3 The Packages 3

4 The Directory Structure 4

5 Scripts to Implement Build Scripts 4

6 Setting Up the Shell Environment 6
6.1 Low-Level Environment Set-Up: gluex env.(c)sh 6

6.1.1 Pre-Defined Home Variables and Defaults . 6
6.1.2 Consistency Checking . 6
6.1.3 Cleaning the Environment: gluex env clean.(c)sh 8

6.2 High-Level Environment Set-Up . 8
6.2.1 Custom Scripts . 8
6.2.2 Using the Versioning System . 8

1

6.2.3 Default Environment at JLab . 9
6.2.4 Simple Environment Set Up . 9

7 The Build System 10
7.1 The Makefiles . 10

7.1.1 The Top-Level: Makefile all . 10
7.1.2 Individual Package Targets . 11
7.1.3 Special Package Target . 11

7.2 The Package Makefiles . 12
7.2.1 Specifying the Version of a Tarball . 12
7.2.2 Checking-Out from a Repository . 12
7.2.3 Extra Features for Specific Packages . 12

7.3 Adding New Package Builds to an Existing Tree . 13
7.3.1 Use the Top-Level Makefile all . 13
7.3.2 Use Individual Package Makefiles . 13

7.4 Building Custom Versions of Packages . 14
7.4.1 my halld build jlab . 14
7.4.2 my halld update.py . 15

8 The Versioning System 15
8.1 Version Set File Format: an XML . 15
8.2 Setting Up the Environment with a Version Set File 16
8.3 Specifying Alternate Source Code Sources with a Version Set File 16
8.4 Directory Tags . 18
8.5 Specifying Alternate Home Directory Locations . 18
8.6 Public Version Set Files . 19

9 The Prerequisites System 19

10 The gluex install System 20
10.1 Installation Steps . 21
10.2 Using the Build . 21

1 Introduction

There are three fundamental areas of concern that make up all software systems. They are:

1. a directory structure

2. a build system

3. a version management system

They are all related, aspects of one affects aspects of each of the others.
Having a standard system makes collaborative work more efficient, especially when one needs

help from others to solve a problem.

2 Getting Started

This section give concise instructions for performing a few common tasks with Build Scripts.

2

2.1 Getting a Copy of Build Scripts

There are several sources.

2.1.1 Pre-Installed at JLab

At JLab, Build Scripts is installed in /group/halld/Software/build scripts. You can start
by defining an enviroment variable:

export BUILD SCRIPTS=/group/halld/Software/build scripts

for bash or

setenv BUILD SCRIPTS /group/halld/Software/build scripts

for tcsh.

2.1.2 Pre-Installed Outside JLab

Outside JLab, when the gluex install procedure has been followed (see section 10), Build Scripts
will be installed under $GLUEX TOP/build scripts. You will have to contact your local expert to
find the location of $GLUEX TOP. Once that is known the BUILD SCRIPTS environment variable
to point to $GLUEX TOP/build scripts.

2.1.3 Install via zip or tar file

All of the releases of Build Scripts are available from GitHub at

https://github.com/JeffersonLab/build scripts/releases

The latest release will be listed first. You will see links for downloading the files in zip and tar
format. After unpacking the files, set your BUILD SCRIPTS environment variable to the full path
of the resulting top-level directory.

2.1.4 Clone from GitHub

You can clone the Git repository:

git clone https://github.com/jeffersonlab/build scripts

3 The Packages

There are several software components that are needed to build and use GlueX software. Most of
them are assumed to be provided by the native operating system or distribution, but there are some
that have to be built by the GlueX user. They are:

1. ROOT: general purpose HENP toolkit

2. JANA: event-based analysis framework

3. sim-recon: simulation and reconstruction for GlueX (deprecated)

4. HDDS: detector geometry specification library

3

https://github.com/JeffersonLab/build_scripts/releases
https://github.com/jeffersonlab/build_scripts

5. CERNLIB: to support FORTRAN-based HENP code programs

6. Xerces-C: for reading XML files

7. CCDB: Calibration Constants Database

8. Geant4: simulation of particle interactions with matter

9. EVIO: CODA format data handling library

10. RCDB: Run Conditions Database

11. HDGeant4: Geant4 implementation of the GlueX detector simulation

12. hd utilities: miscellaneous scripts and programs

13. gluex root analysis: ROOT-based analysis of post-reconstruction data

14. AmpTools: framework for amplitude-based physics analysis

15. SQLiteC++: a C++ SQLite wrapper library

16. SQLite: server-less SQL database engine

17. gluex MCwrapper: system for submitting simulation jobs

18. halld sim: simulation programs and utilities for GlueX

19. halld recon: reconstruction for GlueX

20. LAPACK: old-school linear algebra package

21. HepMC: utility library for particle physics

22. PHOTOS: package for simulating radiative effects

23. EvtGen: handles particle decays in a user-configurable library

24. Diracxx: general root/c++ toolkit for computing Feynman amplitudes

Detailed description of these packages will not be given here; please see the GlueX Offline Software
wiki page for more information.

There are in general multiple versions (releases) of each of these packages and it is often convenient
to have access to more that one version of a package built and available for use. In addition some
packages depend on one or several others for libraries and include files.

4 The Directory Structure

The Build Scripts directory structure supports multiple versions of each package. For an example
see Fig. 1. In the figure, “gluex top” is a generic name, each installation may choose a different
directory name. Build Scripts looks for the name of this directory in the environment variable
GLUEX TOP.

Under gluex top, each package has its own container directory (e. g., JANA, hdds, sim-recon)
and for each package container directory one or more specific versions of that package are built.

5 Scripts to Implement Build Scripts

All scripts and makefiles to support Build Scripts are found the in the build scripts directory.
At JLab, the full path is

/group/halld/Software/build scripts

4

gluex_top

|-- build_scripts

|-- cernlib

| ‘-- 2005

|-- evio

| |-- evio-4.2

| ‘-- evio-4.3.1

|-- hdds

| |-- hdds-3.1

| ‘-- hdds-3.2

|-- jana

| |-- jana_0.7.2

| ‘-- jana_0.7.3

|-- root

| |-- root_5.34.04

| ‘-- root_5.34.26

|-- sim-recon

| |-- sim-recon-1.2.0

| ‘-- sim-recon-1.3.0

‘-- xerces-c

|-- xerces-c-3.1.1

‘-- xerces-c-3.1.2

Figure 1: The directory structure.

5

The directory can also be cloned from the Git repository at GitHub. The URL is

https://github.com/jeffersonlab/build scripts

Many of the scripts and makefiles described in this note require that the environment variable
BUILD SCRIPTS be defined and point to an instance of this directory.

6 Setting Up the Shell Environment

Facility is provided for setting environment variables necessary both for building the software and
for using it. Both Bourne-shell-like and C-shell-like shells are supported, but real testing has only
been done with bash and tcsh. In the following all examples will be appropriate for bash. Note that
whenever a script like foo.sh is mentioned, there is also a foo.csh in the build-scripts directory.

6.1 Low-Level Environment Set-Up: gluex env.(c)sh

The gluex env.(c)sh script will define all environment variables needed to run and build GlueX
software. It takes as input the home directories of each package as found in the environment variables
listed in Table 1.

Given the home directory of a package, there may or may not be other environment variables
that need to be set, those variables derived from the value of home. gluex env.(c)sh takes
care of this. For example, XERCES INCLUDE is used in the build system and must be defined as
$XERCESCROOT/include. Directories containing binaries must be added to the PATH variable and
similarly for LD LIBRARY PATH, and PYTHONPATH. For these path variables directories are always
added at the front with any pre-existing directories maintained on the list.

6.1.1 Pre-Defined Home Variables and Defaults

If GLUEX TOP is defined in advance, the pre-defined value will be used. If not it will be defined as
/usr/local/gluex.

If BUILD SCRIPTS is defined in advance, again the pre-defined value will be used. If not defined
it will be defined as $GLUEX TOP/build scripts.

If any of the home directories are defined before sourcing gluex env.(c)sh, those values will
be respected. If any are not defined, then a default will be provided, usually the prod directory in
the package container directory. Because of this behavior, the user can define as many or as few
of the home directories as desired in advance of sourcing gluex env.(c)sh, letting the script finish
the environment settings keying off of the user definitions (or lack thereof). The user is thus only
responsible for setting the values of desired home directories. A side effect of this behavior is that
the environment that results is non-deterministic in the sense that the result depend on the values
of pre-existing home directory variables. Different initial conditions will give different environments.

6.1.2 Consistency Checking

The final step in gluex env.(c)sh is to check the resulting environment for consistency using the
prerequisites system. Each home directory is checked for a prerequisites version set file. Those files
list versions of prerequisite packages used at build time. The build-time version are checked against
the versions used in the just-set-up environment and warnings are printed when mismatches are
detected. See Section 9 for the details.

6

https://github.com/jeffersonlab/build_scripts

Package Home Directory Variable
ROOT ROOTSYS

JANA JANA HOME

sim-recon SIM RECON HOME

HDDS HDDS HOME

CERNLIB CERN ROOT

Xerces-C XERCESCROOT

CCDB CCDB HOME

Geant4 G4ROOT

EVIO EVIOROOT

RCDB RCDB HOME

HDGeant4 HDGEANT4 HOME

hd utilities HD UTILITIES HOME

gluex root analysis ROOT ANALYSIS HOME

AmpTools AMPTOOLS HOME

SQLiteC++ SQLITECPP HOME

SQLite SQLITE HOME

gluex MCwrapper MCWRAPPER CENTRAL

halld sim HALLD SIM HOME

halld recon HALLD RECON HOME

LAPACK none

HepMC HEPMCDIR

PHOTOS PHOTOSDIR

EvtGen EVTGENDIR

Diracxx DIRACXX HOME

Table 1: Packages and their home directories.

7

export GLUEX_TOP=/home/gluex/gluex_top

export BUILD_SCRIPTS=$GLUEX_TOP/build_scripts

export HALLD_HOME=/home/username/sim-recon

source $BUILD_SCRIPTS/gluex_env.sh

Figure 2: Example of a custom set-up script. The build of sim-recon in the user’s home directory will
be used. All other packages be set up to use with their default builds under /home/gluex/gluex top.
Note that GLUEX TOP and BUILD SCRIPTS are defined explicitly rather than letting them default.

export GLUEX_TOP=/home/gluex/gluex_top

export BUILD_SCRIPTS=$GLUEX_TOP/build_scripts

source $BUILD_SCRIPTS/gluex_env_version.sh \

/home/username/my_versions.xml

Figure 3: Example of a set-up script driven by a private version file. See Section 8 for the format of the
file.

6.1.3 Cleaning the Environment: gluex env clean.(c)sh

Since gluex env.(c)sh is sensitive to definitions hanging around in the environment, there is a script
provided that will undo all GlueX-related definitions:
gluex env clean.(c)sh. Sourcing it will eliminate unintended consequences from previously made
definitions. For the path variables the script only removes the GlueX-related elements leaving all
others present in the path.

6.2 High-Level Environment Set-Up

6.2.1 Custom Scripts

The most common reason to have a custom script is when you want to use a package that is outside
the standard directory structure. Since gluex env.(c)sh will respect a pre-defined value of any of
the home directories, this can be done without making a private version of gluex env.(c)sh. See
Fig. 2 for an example. Here a version of sim-recon built in a non-standard location (the user’s home
directory) will be used in the resulting environment.

6.2.2 Using the Versioning System

Another way to get a non-default environment is to use the versioning system to set home directory
locations which in turn are respected by gluex env.(c)sh. The versioning system is described in
detail in Section 8, but an example set-up script is shown in Fig. 3. In this example, package version
information is contained in the XML file my versions.xml in the user’s home area. An example
version set file is shown in Fig. 4. Alternate combinations of package versions can be tried by making
alternate versions of the version set file.

8

6.2.3 Default Environment at JLab

At JLab there is script that packages the steps shown in Fig. 3, with the appropriate values of
GLUEX TOP and BUILD SCRIPTS. It uses the current default version set file, version.xml. It can also
be used as an example for using a custom version of version.xml. To use it, for bash:

source /group/halld/Software/build_scripts/gluex_env_jlab.sh

and for tcsh:

source /group/halld/Software/build_scripts/gluex_env_jlab.csh

Optionally, these commands will take an argument naming a version set file to use rather than the
current default. For example, for bash:

source /group/halld/Software/build_scripts/gluex_env_jlab.sh \

/home/username/my_versions.xml

6.2.4 Simple Environment Set Up

The simplest (and recommended) form of environment set-up under Build Scripts is the gxenv

command. To define this command, use gluex env boot jlab.(c)sh (at JLab) and gluex env boot.(c)sh

(for gluex install builds). These scripts also define the gxclean command. gxenv is used to set up
the GlueX environment and gxclean is used to reverse the set up. The scripts also provide an envi-
ronment variable, HALLD VERSIONS, that points to the directory containing all of the official version
set files (the version *.xml files).

How to use the scripts to define the commands.

For tcsh, include the following line in your .cshrc, .login, or .tcshrc:

source /group/halld/Software/build_scripts/gluex_env_boot_jlab.csh

at JLab and

source /path/to/gluex_top/gluex_env_boot.csh

for gluex install builds.

For bash, include the following line in your .bashrc, .profile, or .bash profile:

source /group/halld/Software/build_scripts/gluex_env_boot_jlab.sh

at JLab and

source /path/to/gluex_top/build_scripts/gluex_env_boot.sh

for gluex install builds.

Note that these “boot” scripts do not set up the GlueX environment. They merely define the
command that will do the set up.

How to use the commands.

Usage is the same for both tcsh and bash, JLab and gluex install.

To Set-Up the Environment: gxenv

• To get the default environment:

gxenv

9

• To get the environment for a particular official version set, say version 3.5 jlab.xml,
use the HALLD VERSIONS environment variable:

gxenv $HALLD_VERSIONS/version_3.5_jlab.xml

• To get the environment for an arbitrary xml file, use its path:

gxenv /path/to/my_version.xml

To Take-Down the Environment: gxclean

To clear all of the GlueX-specific parts of the environment, including GlueX-specific path
elements (i.e., those in PATH, LD LIBRARY PATH, and PYTHONPATH):

gxclean

This is not guaranteed to completely clean all gluexy things in all circumstances, but
should work well when using gxenv to do the set-up.

Why implement things this way and not just do the set-up in the ‘.*rc‘ file? The underlying
set-up command, ‘gluex env jlab.(c)sh,‘ has become a bit heavy. You may not want to have it
executed everytime you start a new sub-shell. Also having the version set hard-wired in your initial
environment can be confusing if you change version sets depending on what you are working on.
For these reasons, putting the set-up in the global shell set-up is not recommended. Sourcing these
scripts is very fast and once sourced, it is easy to switch from one version set to another, even from
the command line.

7 The Build System

Each of the packages have their own native build system and each build system has its own set of
details that have to be understood. In addition, the technology used to do the build varies from
system to system. It may be make, imake, cmake, SCons, or something else. The Build Scripts
system makes a choice of build options for each package so that the user need not master these
details.

7.1 The Makefiles

The Build Scripts build system is implemented in GNU Make. These makefiles invoke the native
package-specific build system. The top-level makefile builds packages into the standard directory
structure described in Section 4. It in turn uses a “package makefile” for each package (e. g.,
Makefile jana, Makefile sim-recon). Invoking make with a package makefile will build that
package with the home directory placed in the current working directory. In other words, the
package makefiles have no knowledge of the directory structure within which they are used; they
just build locally. Only the top-level makefile knows about the directory structure.

7.1.1 The Top-Level: Makefile all

Complete builds are orchestrated by Makefile all. The highest-level targets of Makefile all, shown
with their dependencies are:

all: gluex_pass2

gluex_pass1: xerces_build lapack_build cernlib_build root_build \

geant4_build evio_build sqlite_build sqlitecpp_build \

10

rcdb_build ccdb_build

gluex_pass2: gluex_pass1 jana_build hdds_build amptools_build \

hepmc_build photos_build evtgen_build halld_recon_build \

halld_sim_build hd_utilities_build hdgeant4_build \

gluex_root_analysis_build mcwrapper_build

The all target builds all officially supported packages. These are broken into two sets, gluex pass1

and gluex pass2 to solve the issue of packages that can only be set-up after they are built. This is
a problem when starting from scratch. In that case the build must proceed in four steps.

1. Initial environment set-up.

2. Build the gluex pass1 target.

make -f $BUILD_SCRIPTS/Makefile_all gluex_pass1

3. Final environment set-up using contents of packages built in pass 1.

4. Build the gluex pass2 target.

make -f $BUILD_SCRIPTS/Makefile_all gluex_pass2

Makefile all should always be invoked from the $GLUEX TOP directory.
If you would like the build to proceed in parallel (for those packages that support parallel builds),

set an environment variable (eight threads in this example):

export NTHREADS=8

or set the variable on the make commmand line. For example:

make -f $BUILD_SCRIPTS/Makefile_all gluex_pass2 NTHREADS=8

7.1.2 Individual Package Targets

Each of the individual package targets (e. g., evio build and hdds build) use the corresponding
package makefile. Directories are created and the package makes are executed in way that gives the
directory structure described in Section 4. To do this, the package container directory is created if
it does not exist and the requested package makefile is invoked from within the package container
directory.

Of course, each individual package build target can be invoked directly. More on this in Sec-
tion 7.3

7.1.3 Special Package Target

The target cernlib debug is non-standard. If this target is invoked, it well create a separate
container directory cernlib debug for the debug versions. Also it does not have its own package
makefile, rather on 64-bit machines, it invokes Makefile cernlib Vogt with command line options
that cause appropriate debug compiler flags to be used.

To use the resulting debug version of CERNLIB, the CERN variable must be set to point to the
cernlib debug directory, either explicitly as an environment variable (as described in Section 6.2.1
or by using the home attribute in the package element of a version set file (as described in Section 8.

11

7.2 The Package Makefiles

Each of the package makefiles is sensitive to environment variables that control which version of the
package to build. The makefiles themselves take care of obtaining the source code. In general, there
are two ways to get the code: downloading a tarball or checking the code out from a version control
repository, although the later option is not available for all packages.

7.2.1 Specifying the Version of a Tarball

Each packages respects a version-specifying environment variable. Here is an example of how they
might be set in the C-shell:

setenv JANA_VERSION 0.7.2

setenv SIM_RECON_VERSION 1.2.0

setenv HDDS_VERSION 3.2

setenv CERNLIB_VERSION 2005

setenv XERCES_C_VERSION 3.1.1

setenv CLHEP_VERSION 2.0.4.5

setenv ROOT_VERSION 5.34.26

setenv CCDB_VERSION 1.05

setenv RCDB_VERSION 0.00

setenv EVIO_VERSION 4.3.1

In each case there is standard system for distributing tarballs marked with the version name.
Each package has different conventions, but the package makefiles have that knowledge of the ap-
propriate convention coded in. Also, the name of home directory created depends on the name that
appears in the tarball (with exceptions as mentioned in Section 8.4. Note that the version variable
can be set on the make command line as well.

7.2.2 Checking-Out from a Repository

Some packages can be checked out from a Subversion or Git repository. If that is the desired source
of the code, the version variable should not be set. Instead a URL variable should be used to specify
the location of the repository. For example:

setenv HDDS_URL https://github.com/jeffersonlab/hdds

will cause the HDDS package makefile to check out the master branch of the HDDS Git repository
at GitHub. The names of the variables for other packages are JANA URL (Subversion), CCDB URL (Git),
RCDB URL (Git), and SIM RECON URL (Git) respectively.

For packages that use a Git repository, there are two additional variables that can be used to
control the checkout. SIM RECON BRANCH is used to check-out a specific branch and SIM RECON HASH

is used to check-out a specific commit of sim-recon. If one is set, the other should not be. There are
analogous variables for CCDB, RCDB, and HDDS.

7.2.3 Extra Features for Specific Packages

SCons options for halld recon, halld sim, and sim-recon

For the halld recon, halld sim, and sim-recon packages, there are variables, one per packages,
that can be defined, either in the shell environment on on the make command line, that will
supply optional arguments to the native scons command invoked by make. They are

12

HALLD_RECON_SCONS_OPTIONS

HALLD_SIM_SCONS_OPTIONS

SIM_RECON_SCONS_OPTIONS

respectively. For example,

make -f $BUILD_SCRIPTS/Makefile_halld_recon \

HALLD_RECON_SCONS_OPTIONS=’SHOWBUILDS=1 -j4’

will cause SCons to show the compiler commands explicitly and build halld recon with four
threads.

Building LAPACK/BLAS

The LAPACK and BLAS libraries are needed by CERNLIB. They are downloaded and build
automatically, but rather than being installed in their own home directory, The “install” target
of Makefile lapack adds them to the lib directory of your CERNLIB build.

Forcing use of Python 2 for HDGeant4

For systems that do not have Python 2 as the default, setting the make variable PYTHON2 EXPLICIT

will force the use of Python-2-specific versions of the boost-python library and the python-config
command in Makefile hdgeant4.

7.3 Adding New Package Builds to an Existing Tree

There are two ways:

7.3.1 Use the Top-Level Makefile all

After setting the desired values of the version environment variables and/or the URL environment
variables (see Section 7.2 you can invoke Makefile all with the target(s) needed or with a high-level
target like gluex,

cd $GLUEX_TOP

make -f $BUILD_SCRIPTS/Makefile_all gluex

If some of the versions of individual packages requested already exist, then make will do the usual
thing: try to remake them and find that there is nothing to do.

7.3.2 Use Individual Package Makefiles

Since the individual package makefiles build in the local directory, they can be used directly by going
to the appropriate container directory. For example,

cd $GLUEX_TOP/sim-recon

make -f $BUILD_SCRIPTS/Makefile_sim-recon SIM_RECON_VERSION=1.4.0

Note that in this example the version is specified on the make command line rather than through
an environment variable. That is not necessary; it is an option supported by make and defining
SIM RECON VERSION in the environment would work as well. Also note that doing the build in the
sim-recon container directory is not necessary for the build to succeed; any directory will work. In
this example however we are adding to an existing standard directory structure so we cd to the
standard directory.

13

7.4 Building Custom Versions of Packages

7.4.1 my halld build jlab

Script location at JLab:
/group/halld/Software/build scripts/my halld build jlab

Usage message:

my_halld_build_jlab [-h] [-x filename] [-n nthreads] [package_1] [package_2] ...

where:

-h show this help text

-x set name of version set XML file

(default: /group/halld/www/halldweb/html/dist/version_jlab.xml)

-n set number of threads to use in builds (default: 1)

-k keep potentially inconsistent packages in environment

(default: remove them from the environment)

package_n package name, choose from:

hdds

sim-recon

halld_recon

halld_sim

hdgeant4

gluex_root_analysis

if no package name supplied all except sim-recon will be built

Examples:

1. Build all GlueX packages (hdds, halld recon, halld sim, hdgeant4, and gluex root analysis):

my_halld_build_jlab

2. Build halld recon only, using hdds from the default global build:

my_halld_build_jlab halld_recon

3. Build halld recon, halld sim, and hdgeant4, use hdds from the global build defined in ver-
sion 3.1 jlab.xml:

DIST=group/halld/www/halldweb/html/dist

my_halld_build_jlab -x $DIST/version_3.1_jlab.xml \

halld_recon halld_sim hdgeant4

4. Build halld sim, using halld recon from the default global build, using 4 threads:

my_halld_build_jlab -n 4 halld_sim

5. Build halld recon, using hdds from the default global build, and retaining environment set-up
of halld sim, hdgeant4, and gluex root analysis from the default global build even though the
latter three were built against a different version of halld recon

my_halld_build_jlab -k halld_recon

14

7.4.2 my halld update.py

Usage message:

usage: my_halld_update.py [-h] [-x XML] [-n NTHREADS]

[inputPackages [inputPackages ...]]

positional arguments:

inputPackages list of packages to update

optional arguments:

-h, --help show this help message and exit

-x XML, --xml XML version set xml file name (default: version.xml)

-n NTHREADS, --nthreads NTHREADS

number of threads to use in rebuild (default: 1)

Examples:

1. Update all private packages as identified by version.xml in the current working directory.
Private packages contain a ”home” attribute:

my_halld_update.py

2. Update halld sim only:

my_halld_update.py halld_sim

3. Update all private packages as identified by /home/user/project/version special.xml:

my_halld_update.py -x /home/user/project/version_special.xml

8 The Versioning System

8.1 Version Set File Format: an XML

The versioning system uses an XML-formatted version set file to specify both package version infor-
mation and package home directory definition in the shell environment. An example file is shown in
Fig. 4.

There is only one type of element, the package. Attributes are:

name: The name of the software package.

version: The version number of the package.

url: A URL to be used to checkout (Subversion) or clone (Git) the code. The URL should point
to an appropriate repository.

branch: When using a Git repository, the branch to be checked-out.

hash: When using a Git repository, the hash of the commit to be checked-out.

dirtag: A string (directory tag) to be appended to the standard directory name of the package
when it is built.

home: Force the location of the package home directory when setting up the environment.

15

<gversions>

<package name="jana" version="0.7.3"/>

<package name="sim-recon" version="1.4.0"/>

<package name="hdds" version="3.3"/>

<package name="cernlib" version="2005" word_length="64-bit"/>

<package name="xerces-c" version="3.1.1"/>

<package name="clhep" version="2.0.4.5"/>

<package name="root" version="5.34.26"/>

<package name="ccdb" version="1.05"/>

<package name="evio" version="4.3.1"/>

<package name="rcdb" version="0.00"/>

</gversions>

Figure 4: An example version set file. version 1.7.xml is shown.

8.2 Setting Up the Environment with a Version Set File

As we saw in Section 6.1, environment setting via gluex env.(c)sh is sensitive to the definition
of the package home variables. In Section 7.2, we saw that the package makefiles are sensitive to
either the version-defining environment variables or the URL-defining environment variables, using
them to choose the version of code to build. The version set file can be used to define both classes
of variables. In this way it can be used to both build a consistent set of packages and to set-up the
environment to use the build. Executing

$BUILD_SCRIPTS/version.pl version_1.7.xml

where for the purposes of this example version 1.7.xml is the file shown in Fig. 4 and GLUEX TOP is
/home/gluex/gluex top, creates the output shown in Fig. 5. Since you would want these commands
applied to the current shell level, in practice you use

eval ‘$BUILD_SCRIPTS/version.pl version_1.7.xml‘

Following this step, one normally would invoke gluex env.(c)sh to complete the set-up of the
environment.

In this example, the variable definitions come (mostly) in pairs, a version variable and a home
directory variable. The version variable affects only the build process since the corresponding package
makefile keys off it (see Section 7.2). The home directory variable affects the build as well in that it
tells the package makefile where to find any prerequisite packages and in addition it affects use of a
build via its effect on path variables.

Finally, the script gluex env version.(c)sh combines use of version.pl and gluex env.(c)sh

to more conveniently set up the environment. We have already seen an example of its use in Fig. 3.
The script uses version.pl as shown above to set the stage for an invocation of gluex env.(c)sh.

8.3 Specifying Alternate Source Code Sources with a Version Set
File

We saw in Section 7.2 that a URL variable can be used to instructed the package makefiles to get
the source code from a version control repository rather downloading a tarball. The url attribute in

16

setenv JANA_VERSION 0.7.3;

setenv JANA_HOME \

/home/gluex/gluex_top/jana/jana_0.7.3/Linux_RHEL7-x86_64-gcc4.8.3;

setenv SIM_RECON_VERSION 1.4.0;

setenv HALLD_HOME /home/gluex/gluex_top/sim-recon/sim-recon-1.4.0;

setenv HDDS_VERSION 3.3;

setenv HDDS_HOME /home/gluex/gluex_top/hdds/hdds-3.3;

setenv CERNLIB_VERSION 2005;

setenv CERN /home/gluex/gluex_top/cernlib;

setenv CERN_LEVEL 2005;

setenv CERNLIB_WORD_LENGTH 64-bit;

setenv XERCES_C_VERSION 3.1.1;

setenv XERCESCROOT /home/gluex/gluex_top/xerces-c/xerces-c-3.1.1;

setenv CLHEP_VERSION 2.0.4.5;

setenv CLHEP /home/gluex/gluex_top/clhep/2.0.4.5;

setenv ROOT_VERSION 5.34.26;

setenv ROOTSYS /home/gluex/gluex_top/root/root_5.34.26;

setenv CCDB_VERSION 1.05;

setenv CCDB_HOME /home/gluex/gluex_top/ccdb/ccdb_1.05;

setenv EVIO_VERSION 4.3.1;

setenv EVIOROOT /home/gluex/gluex_top/evio/evio-4.3.1/Linux-x86_64;

setenv RCDB_VERSION 0.00;

setenv RCDB_HOME /home/gluex/gluex_top/rcdb/rcdb_0.00;

Figure 5: Output of $BUILD SCRIPTS/version.pl.

17

the package element calls out the value of the URL to use directly. In a particular package element,
either the version attribute or the url attribute should appear; if both appear then the version

attribute will be used (i. e., tarball). If the url attribute is used, each package makefile will interpret
the URL as is appropriate for that package, either as a Subversion repository or a Git repository;
there can be only one answer and it is coded into the package makefile. For Git repositories, the
optional branch attribute controls which branch is checked out. If it is absent, the master branch
is used. For example, to clone sim-recon and checkout the branch test stuff, use

<package name="sim-recon"

url="https://github.com/jeffersonlab/sim-recon"

branch="test_stuff"/>

This will cause the SIM RECON BRANCH variable to be set in the environment. Similarly the hash

attribute can be used to specify the hash of the particular commit to be checked-out.

<package name="sim-recon"

url="https://github.com/jeffersonlab/sim-recon"

hash="22fe917"/>

Note that for Subversion repositories, the branch specification is encoded in the URL itself and
the branch and hash attributes are ignored.

8.4 Directory Tags

The dirtag attribute can be used to distinguish different builds of a package where the only difference
between them is the version(s) of one or more prerequisite packages. The string used is arbitrary. A
directory tag can be attached to either a source directory made from a tarball or one from a source
code repository. The tag name is appended after a caret symbol (ˆ), for example,

<package name="hdds" version="3.3" dirtag="xerces_test"\>

in a version set file would cause version.pl to add an additional variable to the environment:

setenv HDDS_DIRTAG xerces_test

and Makefile hdds would then produce a directory named hdds-3.3^xerces test, with source
code obtained from the standard tarball, hdds-3.3-src.tar.gz in this case.

The corresponding home directory variable will also reflect the directory tag, of course.
There are a lot possible meanings for the directory tag. It could mark different combinations of

prerequisites as well as designating packages where the source code does not come from a standard
source (tarball or repository). Because of the large number of possibilities, the form of the tag string
is left to the user; no assumption is made about it meaning.

8.5 Specifying Alternate Home Directory Locations

Often one wants to use a build of a specific package that lies outside of the standard directory
structure. This can be put into the environment by setting the home attribute of the corresponding
package element. For example

<package name="sim-recon" home="/home/my/sim-recon"/>

will cause version.pl to generate

18

export HALLD HOME=/home/my/sim-recon

Note that this feature is mainly useful for creating an environment for use; when building it (a)
gives no guidance on where the source code should come from and (b) does not cause the build to
be done in the named directory. It is useful when a pre-built package needs to be referenced for the
current task.

8.6 Public Version Set Files

The public version set files are stored in a GitHub repository, JeffersonLab/halld versions, available
at

https://github.com/JeffersonLab/halld versions

At JLab the repository is checked out in

/group/halld/www/halldweb/html/halld versions

and can be access on the web at

https://halldweb.jlab.org/halld versions/.

The names of the files are of two main types, (1) version sets that correspond to a periodic
package update release and (2) version sets that correspond to a “launch” over GlueX data.

1. File names for package update releases are of the form version i.j.k.xml, where i, j,
and k are a major version number for the version set, a minor version number, and a sub-minor
version number. For example, version 4.1.0.xml.

2. File names for launches are of the form launch-name i.xml, where launch-name corre-
sponds to the name assigned to the launch and i is a version number. For example recon-2018 08-ver00 1.xml

9 The Prerequisites System

Each package may or may not have a build dependency on other packages managed by Build
Scripts. For example a particular version of sim-recon can be built against any of a number of
versions of HDDS, including custom versions provided by the user. To insure that the environment
being set-up has a consistent set of package versions, a facility is provided to warn the user if possible
inconsistencies are detected.

At build time, a version xml file is created in the home directory of a package if that package
has dependencies on others in the system. For example, $HALLD HOME will have the file sim-
recon prereqs version.xml, listing the versions used to build sim-recon. An example is shown in
Fig. 6

At set-up time, when gluex env.(c)sh is invoked, if a version file with prerequisites is found
in the package home directory, then each package in that file is checked for version consistency. A
match is sought between the version number specified in the version set file and the version number
encoded in the home directory for the prerequisite package, i. e., the directory defined as home in
the environment being set-up. Here the version from the home directory is extracted in two ways
depending on how the package was built:

1. Tar File. If the source code came from a tar file, then the version number is parsed out of the
name of the home directory.

19

https://github.com/JeffersonLab/halld_versions
https://halldweb.jlab.org/halld_versions/

<gversion version="1.0"

><package name="evio" version="4.3.1"

/><package name="cernlib" version="2005"

/><package name="root" version="5.34.26"

/><package name="jana" version="0.7.3"

/><package name="hdds" version="3.3"

/><package name="ccdb" version="1.05"

/></gversion

>

Figure 6: An example of sim-recon prereqs version.xml.

2. Subversion Check-Out. If the source was checked out of a subversion repository, the svn

info command is used to get the name of the subversion directory checked out and the version
is parsed from that directory name.

3. Git Clone and Check-Out. If the source code was checked-out from a Git repository, the
git remote -v command is issued and the URL is parsed from the “fetch” line. The branch
is obtained from the git status command. If the prerequisite file does not contain a branch
specification, then the version check will require the master branch to have been checked out.
At this writing, version checking for specific commit hashes has not been implemented.

If a version mismatch is found, a warning is written to the screen. To stop the version check from
being performed, set the environment variable

BUILD SCRIPTS CONSISTENCY CHECK

to the value "false".
There are cases where the home directory does not contain any information about the source of

its source code. For example, the code could have come via the svn export command or the git

archive command. If a such a build (for example HDDS) is a prerequisite of another package (for
example, sim-recon), then the dependent package (sim-recon) will usually have listed the prerequisite
(HDDS) with neither a version nor a url attribute defined in its (sim-recon’s) prerequisite file. In
that case, a warning will be issued noting the absence of both version and url attributes.

10 The gluex install System

The gluex install system uses build scripts to create a complete install of GlueX software from
scratch. This is especially useful for new machines.

No interaction from the user should be required to get a successful build. The only assumption
made is that the basic packages that come in a minimal install are present. The definition of minimal
depends on the installation. In all cases, the distribution was tested by first installing from a DVD
or CD ISO image. Typically, the “live DVD” version was chosen since that installs the smallest
number of packages.

The scripts have been tested on the following distributions listed in Table 2.

20

Distribution Package Type
CentOS RedHat
Scientific Linux RedHat
Ubuntu Debian
Fedora RedHat
LinuxMint Debian
openSUSE RedHat
RedHat Enterprise RedHat

Table 2: Gluex install tested distributions.

10.1 Installation Steps

Root access is required for steps (1) and (3).

1. System Update. It is recommended that you update your system to the latest versions of
of all system supplied software. For RedHat-like distributions you do a “yum update”. For
Debian-like systems you do a “apt-get update”.

2. Get the Scripts. A zip file and a tar file with the scripts described here are available at

https://github.com/JeffersonLab/gluex install/releases/latest

You can also do a git clone of the latest version:

git clone https://github.com/jeffersonlab/gluex install

3. Prerequisites: gluex prereq <distribution>.sh. The prerequisites script installs pack-
ages from the distribution repository necessary for the GlueX build. As such, it must be
executed by root. In addition it makes some symbolic links in system directories that are
necessary for the cernlib build. These scripts are specific to particular distributions. You must
run this script from inside the “gluex install” directory created when you get the scripts (see
Get the Scripts, step 2).

4. Install: gluex install.sh. Creates a directory, “gluex top”, in the current working directory
to house the build, sets up an environment, downloads all source files, and builds all libraries
and executables needed to run GlueX software. The install assumes a directory structure that
accommodates multiple versions of the GlueX packages if they are needed later. The script is
distribution independent.

Note that if parallel builds are desired (for the packages that support them) set the NTHREADS
environment to the number parallel processes desired. Since gluex install.sh invokes Makefile all,
the value will be used. See Section 7.1.1.

10.2 Using the Build

After the build is complete, there are two files in the gluex directory, setup.sh and setup.csh, that
can be used to set-up the complete GlueX environment under Bourne-like shells or C-like shells
respectively.

21

https://github.com/JeffersonLab/gluex_install/releases/latest
https://github.com/jeffersonlab/gluex_install

	Introduction
	Getting Started
	Getting a Copy of Build Scripts
	Pre-Installed at JLab
	Pre-Installed Outside JLab
	Install via zip or tar file
	Clone from GitHub

	The Packages
	The Directory Structure
	Scripts to Implement Build Scripts
	Setting Up the Shell Environment
	Low-Level Environment Set-Up: gluex_env.(c)sh
	Pre-Defined Home Variables and Defaults
	Consistency Checking
	Cleaning the Environment: gluex_env_clean.(c)sh

	High-Level Environment Set-Up
	Custom Scripts
	Using the Versioning System
	Default Environment at JLab
	Simple Environment Set Up

	The Build System
	The Makefiles
	The Top-Level: Makefile_all
	Individual Package Targets
	Special Package Target

	The Package Makefiles
	Specifying the Version of a Tarball
	Checking-Out from a Repository
	Extra Features for Specific Packages

	Adding New Package Builds to an Existing Tree
	Use the Top-Level Makefile_all
	Use Individual Package Makefiles

	Building Custom Versions of Packages
	my_halld_build_jlab
	my_halld_update.py

	The Versioning System
	Version Set File Format: an XML
	Setting Up the Environment with a Version Set File
	Specifying Alternate Source Code Sources with a Version Set File
	Directory Tags
	Specifying Alternate Home Directory Locations
	Public Version Set Files

	The Prerequisites System
	The gluex_install System
	Installation Steps
	Using the Build

