# Recent results on meson spectroscopy from CLAS



# Paul Eugenio Florida State University Tallahassee, FL USA



Results presented at Hadron 2015 by Aristeidis Tsaris & Hussein Al Ghoul

# Overview

nπ<sup>+</sup>π<sup>+</sup>π<sup>-</sup> from CLAS g12
analysis issues uncovered
reanalysis of nπ<sup>+</sup>π<sup>+</sup>π<sup>-</sup>
analysis of Δ<sup>++</sup> π<sup>+</sup>π<sup>-</sup>π<sup>-</sup>
analysis of Λ K<sup>+</sup> π<sup>+</sup>π<sup>-</sup>

# **Results from Jefferson Lab CLAS**



**CLAS** geometry optimized for peripheral production acceptance

# CLAS g12: $\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$



# **PWA 1<sup>-+</sup> Exotic Wave**



# Error found in the amplitude calculation

1-+0-P:iso=rho -1 1-+1-P:iso=rho -1 1++1-S:iso=rho -1 2-+0-D:iso=f2 -1 2-+0-P:iso=rho -1 2-+0-S:iso=f2 -1 2-+1-D:iso=f2 -1 2++1-D:iso=rho -1 2-+1-P:iso=rho -1 1+1+P:iso=rho +1 2-+0+D:iso=f2 +1 1++1+S:iso=rho +1 2-+0+S:iso=f2 +1 2-+1+D:iso=f2 +1 2-+1+P:iso=rho +1 2-+1+S:iso=f2 +1 flatbg 0

1-+0-P:iso=rho -1 2+1-D:iso=f2 -1 2++1-D:iso=rho -1 2-+1-P:iso=rho -1 2-+1-S:iso=f2 -1 1-+1-P:iso=rho -1 1++1-S:iso=rho -1 1 + 1 + P; iso=rho +1 1++1+S:iso=rho +1 2-+1-S:iso=f2 -1 2-+0+P:iso=rho +1 2-+1+D:iso=f2 +1 2++1+D:iso=rho +1 2++1+D:iso=rho +1 2-+1+P:iso=rho +1 2-+1+S:iso=f2 +1 flatbg 0

- helicity amplitudes are not parity eigenstates

- reflectivity amplitudes are linear combinations of helicity amps which are parity eigenstates.

$$\langle \epsilon am \rangle = \left[ |am \rangle - \epsilon P(-1)^{J-m} |a-m \rangle \right] \theta(m)$$
(38)

where P is the parity of the state 'a' and

\_

$$\theta(m) = \frac{1}{\sqrt{2}}, \qquad m > 0$$
  
=  $\frac{1}{2}, \qquad m = 0$   
= 0,  $m < 0$  (39)

The reflectivity  $\epsilon$  is here defined such that it coincides with the naturality of exchanged Regge trajectories. Note that

$$|\epsilon am\rangle = 0$$
 for  $m = 0$ , if  $\epsilon = P(-1)^J$  (40)  
----- Chung -----

Craig

Aris



Using the CLAS-g12 dataset we selected events with three charge pions, measured by the CLAS spectrometer and identifying a neutron by energy and momentum conservation.

A mass independent partial wave analysis was performed using an event based likelihood fit.

### **Enhance Peripheral Production**





### Further Reducing the Baryon Background





 $\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$ 

# $\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$

 $(GeV/c^2)^2$ 

 $M^2(\pi, \pi_{fast})$ 

### Features of the $3\pi$ sample



A total of 17 partial waves were included in the high mass region and 13 partial waves in the low mass region for the PWA fit presented here.

# Partial waves of the 3**π** System for $\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$



### Partial waves of the 3**n** System for $\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$



It was found that the M=0 waves are no longer required!

# **COMPASS Result Presented at Hadron 2015**

Diffractively produced 3-pion and 2-pseudoscalar final states at COMPASS Bernhard Ketzer





Using the CLAS-g12 dataset we selected events with four charge pions, measured by the CLAS spectrometer and identifying a proton by energy and momentum conservation.

A mass independent partial wave analysis was performed using an event based likelihood fit.

### Kinematic Separation of the $\Delta^{++}$

#### Entries 3750040 120 Entries 2460997 Events/30 MeV/c Momentum **Difference:** >0.35 Background $\Delta^{++}$ $|\vec{p}_{\pi_{2}^{+}}|$ 2.5 0.5 $\Delta^{++}$ Signal $|\vec{p}_{\pi_1^+}|$ (GeV/c)<u>×10<sup>1</sup></u> 70000 50000 40 Entries 3750040 180 Entries 3750040 പ്പ് 120 -Entries 2460997 40000 //140 Me// Entries 2460997 100 **∃**80 30000 ず100 Events/ 08 08 20000 60 10000 40 10000 <sup>20</sup>E 0 2.2 1.2 1.4 1.6 1.8 2 2.4 2.4 1.2 1.4 1.6 1.8 2.2 2 $(GeV/c^2)$ $(GeV/c^2)$ $Mass(p, \pi_{fast}^{+})$ $Mass(p, \pi_{slow}^{+})$

 $\gamma p \rightarrow \Delta^{++} \pi^{+} \pi^{-} \pi^{-}$ 

### Data Selection and Background Reduction

 $\gamma p \rightarrow \Delta^{++} \pi^{+} \pi^{-} \pi^{-}$ 



# $\gamma p \rightarrow \Delta^{++} \pi^{+} \pi^{-} \pi^{-}$

### Features of the $3\pi$ sample



A total of 13 partial waves were included in the high mass region and 9 partial waves in the low mass region for the PWA fit presented here.



### Partial waves of the $3\pi$ System off of the $\Delta^{++}$











### The Photoproduction of Excited Strange Mesons in $\gamma p \rightarrow \Lambda K^+ \pi^+ \pi^-$ With CLAS at Jefferson Lab

**Hussein Al Ghoul** 

**Florida State University** 

Hadron 2015





# Lambda identification



Hussein Al Ghoul, Hadron 2015 HADRON 2015 7





### **Final Features**



### **Partial Wave Analysis**

\* 16,500 events subjected to mass independent partial wave analysis

- worlds largest  $\Lambda K^+ \pi^+ \pi^-$  photoproduction dataset to date
- \* Isospin =  $\frac{1}{2}$  amplitudes parameterized by J<sup>P</sup>M<sup> $\varepsilon$ </sup>(isobar)
- \* Main decay mode are  $K^*(892)\pi^+$  &  $\rho K^+$  but also include:  $K^*_{2}(1430)\pi^+$ ,  $\sigma K^+$ ,  $\kappa \pi^+$

#### **Normalization Integrals**

$$\Psi = \int A_{\alpha}(\tau_i) A_{\alpha}^*(\tau_i) \eta(\tau_i) d\tau_i$$

- A Study of the dependence of the decay amplitudes on the (K<sup>+</sup>  $\pi^+ \pi^-$ ) mass



- Mass independent fit
- Data is binned in 100 MeV bins, then shifted by 50 MeV
- 19 waves included in the fit
- Flat background included in the fit
- Rank 1 Spin density matrix



#### **PWA Results**

K\*(1410)

 $I(J^P) = \tfrac{1}{2}(1^-)$ D

Mass  $m = 1414 \pm 15$  MeV (S = 1.3) Full width  $\Gamma = 232 \pm 21$  MeV (S = 1.1)

| Г |   |
|---|---|
|   |   |
|   | P |

410

612

305

619

2.2









shown are the accepted yields

#### **HADRON 2015**

15



shown are the accepted yields

See Aristeidis and Hussein for details