

Analysis of the $\eta(548) \rightarrow \pi + \pi - \pi 0$ and $\eta'(958) \rightarrow \pi + \pi - \eta$ channels for the GlueX Experiment

Oct. 14, 2016

Tegan Beattie, Zisis Papandreou, Justin Stevens

The GlueX Experiment

- GlueX detector:
 - > Nearly 4π -hermetic
 - Sensitive to neutral and charged particles
- 12 GeV electron beam
- Linearly polarized photon beam
 - High luminosity
 - 9 GeV coherent Bremsstrahlung peak

calorimeter -flight target photon beam diamond forward drift wafer chambers central drift chamber electron superconducting tagger magnet beam magnet tagger to detector distance beam is not to scale

GlueX Physics

- Search for evidence of exotic J^{PC} hybrids
- Map light meson spectrum
 - Specifically, the lightest hybrid multiplet (predicted by LQCD calculations)
- Provide validation for QCD model with gluonic degrees of freedom

 $q\overline{q}$ pair w/ contributions from an excited gluon

See CC.00001 (M. Shepherd)

forward calorimeter

time-of

Purpose

- > Establish robust analyses of simplest light mesons using 'Spring 2016' data set
- $\succ \eta$ and η' mesons abundantly available at GlueX
 - \rightarrow World η/η' photoproduction data is sparse at high energies
 - > Σ beam asymmetries not yet measured at high energies
 - Provide rich arrays of resonances for study
 - \succ Many other light mesons decay through π and η mesons
 - $\succ \pi \eta$ and $\pi \eta'$ resonances high on list of possibly-accessible exotics/hybrids
- Reconstructing pure samples of these simple mesons is the first step
 - This talk: most recent results for reconstruction of η and η'
 - > Results include ~ 1/4 of the Spring 2016 data set

Event Selection Cuts

- Select combinations of particles which match our topology
 - ≥ 2 pos. tracks (p, π^+), 1 neg. track (π^-), 2 neutral showers (π^0 or $\eta \to 2\gamma$)
- Loose dE/dx cut for Proton/Pion separation
- \succ Missing mass cut to select out exclusive η or η' production
 - Ensure invariant mass of beam + target ≈ invariant mass of candidate particle
- > Kinematic fit constrains 2γ mass and tests for conservation of E and P
- Vertex cuts remove candidates with decay vertices outside target volume

Event Selection Cuts

- Photon reconstruction around the beam hole and BCAL-FCAL gap less reliable
 - Cut combos with a neutral shower close to either region
- > Cut on 2γ mass to reject less-likely combos which passed kinematic fit

Clean Events

For particle combos which passed all cuts:

- Invariant mass spectra
- Beam asymmetries

$\eta \to \pi^{\dagger} \pi^{\bar{}} \pi^0$ Mass Spectrum

$\eta' \rightarrow \pi^{\dagger} \pi^{\bar{}} \eta$ Mass Spectrum

Beam Asymmetry

- > Σ beam asymmetry: polarization observable
- Provides insight into helicity amplitudes of the interaction
- Use coherent peak data (8.4 9.0 GeV)
- Polarized yield as a function of φ is proportional to PΣ
- 2 polarization configurations: PARA, PERP
- Fit to ASYM eliminates possible
 φ-dependent acceptance effects
- F_R = PERP/PARA yield normalization factor

See CC.00004 (Z. Zhang)

PERP yield ~
$$(1 + RΣ cos(2φ))$$

PARA yield ~ $(1 - RΣ cos(2φ))$

$$ASYM = \frac{Y_{\perp} - F_{R}Y_{\parallel}}{Y_{\perp} + F_{R}Y_{\parallel}} = \frac{(P_{\perp} + P_{\parallel})\Sigma \cos(2\varphi)}{2 - (P_{\perp} - P_{\parallel})\Sigma \cos(2\varphi)}$$

$$P_{\parallel} \approx P_{\parallel} \rightarrow ASYM \approx P\Sigma \cos(2\phi)$$

$\eta \rightarrow \pi^{\dagger} \pi^{\bar{}} \pi^{0}$ Beam Asymmetry

$$f(\phi) = P\Sigma \cos(2\phi)$$

- Clear sinusoidal behaviour
 - Sensitive to Σ asymmetry!

$\eta' \rightarrow \pi^{\dagger} \pi^{\bar{}} \eta$ Beam Asymmetry

$f(\phi) = P\Sigma \cos(2\phi)$

- Clear sinusoidal behaviour
 - Sensitive to Σ asymmetry!

 ϕ_{Proton}

Summary and Outlook

- Our detector/analysis gives clean signals for both η and η' decays
- > Able to see PΣ asymmetry for η and η' (using ~ 1/4 of the Spring 2016 data set)
 - Similar sensitivity to t-averaged PΣ asymmetry
 - ► More robust analysis (P/P considerations, phase shift correction) to come
- Upcoming physics production running
 - Expect ~ 10x more data than Spring 2016 data set over the first year
 - Will significantly improve errors in fits arising from current lack of statistics
- > η' Σ asymmetry never before measured at GlueX energies
 - More statistics → first accurate measurement?
- \succ Theory group (JPAC) predictions of Σ vs mom. transfer (-t)
 - Currently, sparse data at high t
 - More statistics → bin data in t
 - > Investigate yield and Σ asymmetry as functions of t