Analysis of the $\eta(548) \rightarrow \pi+\pi-\pi 0$ and $\eta^{\prime}(958) \rightarrow \pi+\pi-\eta$ channels for the GlueX Experiment

Feb. 18, 2016
Tegan Beattie, Zisis Papandreou, Justin Stevens

Canadian Institute of Nuclear Physics

Institut canadien de physique nucléaire

The GlueX Experiment at Jefferson Lab

> GlueX detector:
> Nearly 4π-hermetic
> Two calorimeters for neutral energy deposition
, Tracking chambers for charged particle tracking
> Triplet Polarimeter for photon beam polarization measurements
> Pair Spectrometer for photon beam energy measurements
> 12 GeV electron beam incident on diamond wafer

- Linearly polarized photon beam
> High luminosity
> 9 GeV coherent Bremsstrahlung peak
> High luminosity in coherent peak
> $10^{8} \mathrm{Y} / \mathrm{s}$ (Design)
> Resolutions:
$\gamma: \sigma_{E} / E \sim 6 \% / \sqrt{E} \oplus 2 \%$
$\mathrm{q}^{ \pm}: \sigma_{p} / p \sim 2-5 \%$

GlueX Physics

- Search for evidence of exotic $J^{\text {PC }}$ hybrids
> Map light meson spectrum
> Specifically, the lightest hybrid multiplet (predicted by LQCD calculations)
> Provide validation for QCD model with gluonic degrees of freedom

Purpose

2 Establish robust analyses of simplest light mesons using 'Spring 2016' data set

- η and η ' mesons abundantly available at GlueX
" World η / η ' photoproduction data is sparse at high energies
- Σ beam asymmetries/cross sections not yet
 measured at high energies
- Provide rich arrays of resonances for study
- Many other light mesons decay through π and η mesons
» $\pi \eta$ and $\pi \eta$ ' resonances high on list of possibly-accessible exotics/hybrids

- Reconstructing pure samples of these simple mesons is the first step
- This talk: most recent results for reconstruction of η and η '
> Results include ~ 1/4 of the Spring 2016 data set

$$
\begin{array}{cc}
\eta \rightarrow \pi^{+} \pi^{\circ} \pi^{0}(B R \sim 22.9 \%) & \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta(B R \sim 42.9 \%) \\
\pi^{0} \rightarrow 2 \varphi & \eta \rightarrow 2 \varphi
\end{array}
$$

Event Selection Cuts

- Select combinations of particles which match our topology
> 2 pos. tracks (p, π^{+}), 1 neg. track (π^{-}), 2 neutral showers (π^{0} or $\eta \rightarrow 2 \gamma$)
> Loose dE/dx cut for Proton/Pion separation
- Missing mass cut to select out exclusive η or η ' production
- Ensure invariant mass of beam + target \approx invariant mass of candidate particle
> Kinematic fit constrains 2γ mass and tests for conservation of E and P
- Vertex cuts remove candidates with decay vertices outside target volume

Event Selection Cuts

- Photon reconstruction around the beam hole and BCAL-FCAL gap less reliable > Cut combos with a neutral shower close to either region
- Cut on 2γ mass to reject less-likely combos which passed kinematic fit
$\pi^{+} \pi^{-} \eta$ Mass vs 2γ Mass

Clean Events

For particle combos which passed all cuts:
> Invariant mass spectra
> Beam asymmetries
$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ Mass Spectrum

$\pi^{+} \pi^{\pi} \pi^{0}$ Mass Post-Cut

$\eta^{\prime} \rightarrow \pi^{+} \pi^{`} \eta$ Mass Spectrum

Beam Asymmetry

- Σ beam asymmetry: polarization observable
> Provides insight into helicity amplitudes of the interaction
ح Use coherent peak data (8.4-9.0 GeV)
> Polarized yield as a function of φ is proportional to P乏
» 2 polarization configurations: PARA, PERP
> Fit to ASYM eliminates possible φ-dependent acceptance effects
$\nu F_{R}=$ PERP/PARA yield normalization factor

$$
\begin{gathered}
\text { PERP yield } \sim\left(1+P_{\|} \Sigma \cos (2 \varphi)\right) \\
\text { PARA yield } \sim\left(1-P_{\perp} \Sigma \cos (2 \varphi)\right) \\
\text { ASYM }=\frac{Y_{\perp}-F_{R} Y_{\| \prime}}{Y_{\perp}+F_{R} Y_{\| \prime}}=\frac{\left(P_{1}+P_{n}\right) \Sigma \cos (2 \varphi)}{2-\left(P_{\perp}-P_{N}\right) \sum \cos (2 \varphi)} \\
P_{\perp} \text { and } P_{\| \prime} \text { found from } \pi^{0} \rightarrow 2 \gamma \text { analysis }
\end{gathered}
$$

GlueX PRL Submission: $\pi^{0} / \eta \Sigma$ Asymmetry

arXiv:1701.08123 [nucl-ex]

$\pi^{0} \rightarrow 2 \gamma$ Yield vs. φ (t-averaged)

- - Laget $[5,6]$
- JPAC [7,8]
... Donnachie [9] Goldstein [4]
- Form yield asymmetry for ranges of -t
- Extract beam asymmetry for each range
- Form yield asymmetry for ranges of -t
- Extract beam asymmetry for each range
- Compare to model predictions (left)
$\begin{array}{r}\text { Goal: Confirm result with } \eta \rightarrow \pi^{+} \pi^{-} \pi^{0} \\ \text { Observe result with } \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta \\ \hline\end{array}$
$\begin{array}{r}\text { Goal: Confirm result with } \eta \rightarrow \pi^{+} \pi^{-} \pi^{0} \\ \text { Observe result with } \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta \\ \hline\end{array}$
- Detailed analysis of π^{0} and η asymmetry
> High statistics $\eta \rightarrow 2 \gamma$ channel
- Model predictions vs. momentum transfer

$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ Beam Asymmetry

PARA Proton ϕ

$$
f(\varphi)=\frac{\left(P_{1}+P_{1}\right) \Sigma \cos (2 \varphi)}{2-\left(P_{1}-P_{11}\right) \sum \cos (2 \varphi)}
$$

» Clear sinusoidal behaviour , Sensitive to Σ asymmetry! (t-averaged)

Asymmetry
PERP Proton ϕ

$\eta^{\prime} \rightarrow \pi^{\dagger} \pi^{-} \eta$ Beam Asymmetry

PARA Proton ϕ

PERP Proton ϕ

Asymmetry

$$
f(\varphi)=\frac{\left(P_{1}+P_{1}\right) \sum \cos (2 \varphi)}{2-\left(P_{1}-P_{11}\right) \Sigma \cos (2 \varphi)}
$$

> Clear sinusoidal behaviour > Sensitive to Σ asymmetry! (t-averaged)

Beginning of Acceptance Studies

For $\eta \rightarrow 2 \gamma, 3 \pi^{0}, \pi^{+} \pi^{-} \pi^{0}$

- Understand acceptance for future cross-section extraction
- Investigating acceptance in bins of beam energy and momentum transfer (-t)
> Simulate data in bins of beam energy
> Form ratios of yields vs. -t
- Compare to same ratios in data
, Work in Progress
> Simulations:
> 300,000 events per 2 GeV beam energy bin
- Plotted η mass in bins of - t
- Fit to Gaussian, extract abundance
- Correct abundances for branching fractions
> Plot yield ratios vs. -t

Branching Fraction Corrected Yield Ratios For Beam Energy Between 8 and 10 GeV

Ratios provide insight into detector acceptance between topologies (ex: charged vs. neutrals) vs. beam energy and -t

Summary and Outlook

> Our detector/analysis gives clean signals for both η and η ' decays
> Able to see P乏 asymmetry for η and η ' (using ~ $1 / 4$ of the Spring 2016 data set)

- Similar sensitivity to t-averaged PE asymmetry
- More robust analysis (with higher statistics) to come
> Upcoming physics production running
, Expect ~ 10x more data than Spring 2016 data set over the first year
- Will significantly improve errors in fits arising from current lack of statistics
> $\eta^{\prime} \Sigma$ asymmetry never before measured at GlueX energies
- More statistics \rightarrow first accurate measurement?
- Theory group (JPAC) predictions of Σ vs mom. transfer (-t)
- Currently, sparse data at high t
- More statistics \rightarrow bin data in t
- Investigate yield and Σ asymmetry as functions of t
> Continue with MC and data acceptance comparisons

