GlueX Data Analysis

Paul Mattione (JSA)

Outline

- * Offline data processing:
 - * Calibration, monitoring, & reconstruction
- * GlueX analysis software
- * Coordinating collaboration analysis efforts

Offline Data Processing

Offline data processing team: Paul Mattione (JSA), Sean Dobbs (NWU), Alex Austregesilo (JSA), Thomas Britton (JSA)

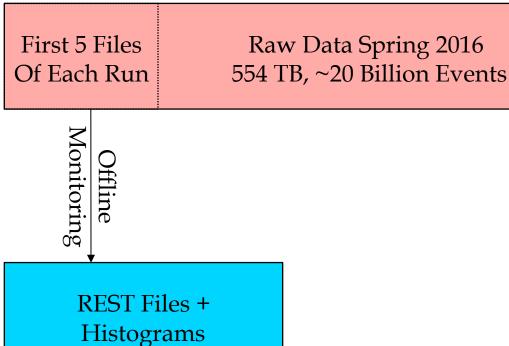
> Previous members: Justin Stevens (W&M), Kei Moriya

Calibration Automation

- ★ Batch farm calibration train (SWIF)
 - * Run plugins & scripts to automatically calibrate data
 - * Timing offsets, drift time-to-distance, tagger time-walk, SC, etc.
 - * Multiple passes: Dependencies
 - * Calibration constants published once human-verified

Calibration Automation

- ★ Batch farm calibration train (SWIF)
 - * Run plugins & scripts to automatically calibrate data
 - * Timing offsets, drift time-to-distance, tagger time-walk, SC, etc.
 - * Multiple passes: Dependencies
 - * Calibration constants published once human-verified
- * Some (complex) procedures not finalized/automated yet
 - * E.g. TOF, π^0 , Tagger/PS calibrations
 - * Skims created to speed up calibrations


Calibration Automation

- ★ Batch farm calibration train (SWIF)
 - * Run plugins & scripts to automatically calibrate data
 - * Timing offsets, drift time-to-distance, tagger time-walk, SC, etc.
 - * Multiple passes: Dependencies
 - * Calibration constants published once human-verified
- * Some (complex) procedures not finalized/automated yet
 - * E.g. TOF, π^0 , Tagger/PS calibrations
 - * Skims created to speed up calibrations
- * Prompt calibrations:
 - * Spring 2016: ~Weekly calibration trains, 1st recon. ~3 weeks after start
 - * Fall 2016: Calibrate as data hits the tape
 - * Future: Run calibrations online

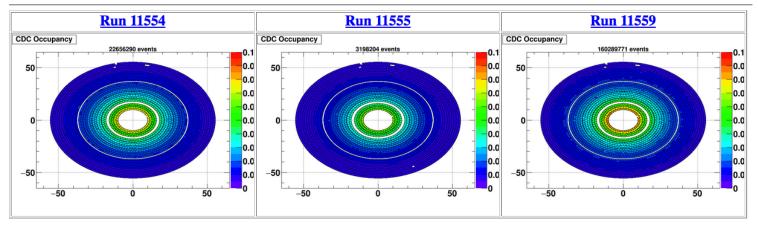
Production Overview (SWIF)

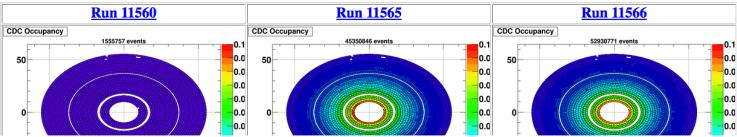
REST: Reconstructed data (tracks, showers, etc.)

Offline Monitoring (SWIF)

- * Run 40 JANA plugins: Occupancies, calibrations, reconstruction
 - * Incoming data (cron), + every ~2 weeks (as changes come in)

Offline Data Monitoring: Plot Browser

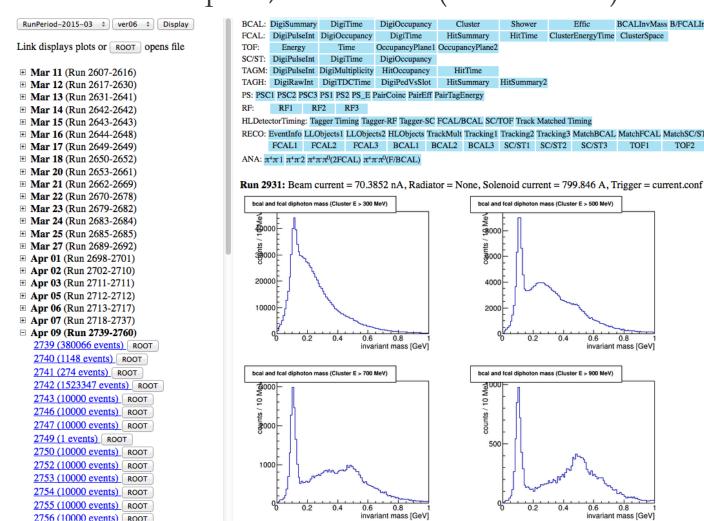

Select Run Period: RunPeriod-2016-02 ct and Recon. Version: ver00 RootSpy

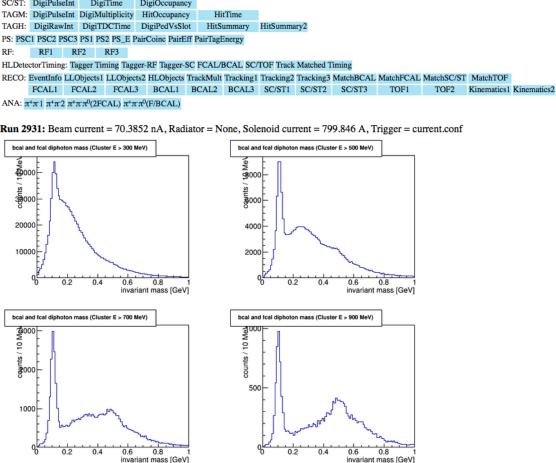

Select plot to display: CDC Occupancy ct and run number range to query: 11554 11568 Display

Add additional MYSQL query requirements as string: eg. and beam_current>20 and solenoid_current>1190

Add additional RCDB query requirements as string: eg. gis_production eg. @is_production

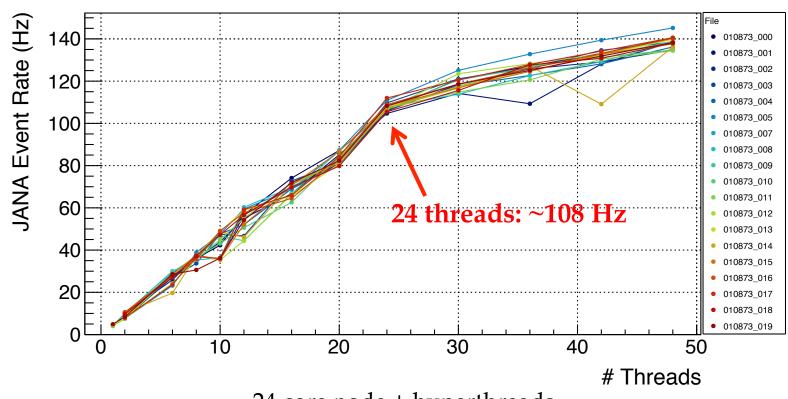
Note: Click on figure to open larger image in new tab, or click on Run # to open runBrowser page for that Run.





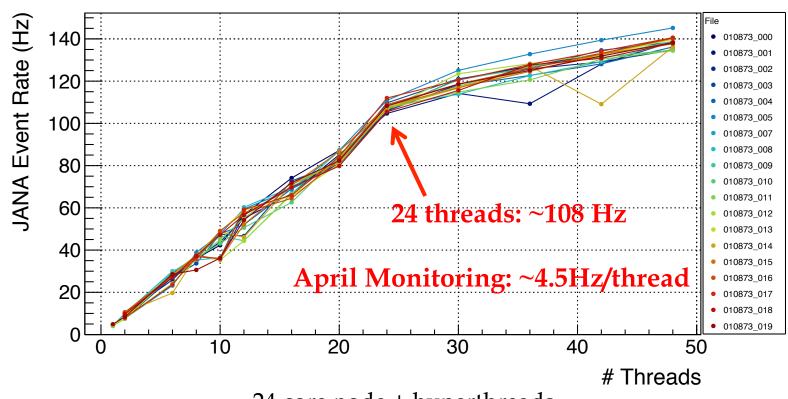
Offline Monitoring (SWIF)

Web browse plots, can browse (& download) ROOT files


BCALInvMass B/FCALInvMass Trigger

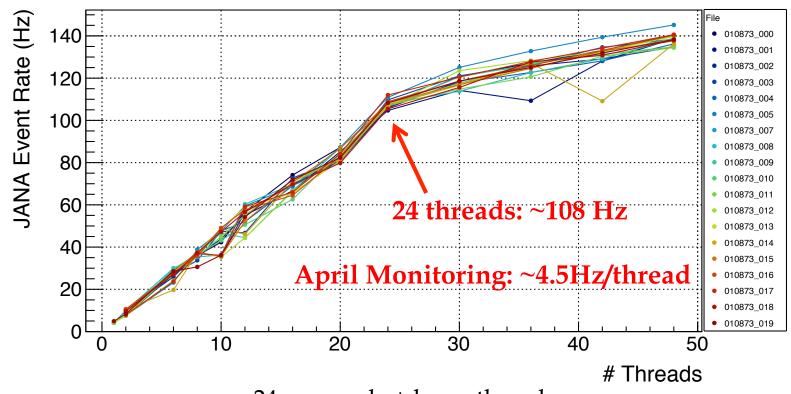
Monitoring Rate (April)

- * Issues with multi-threaded scaling: 24 threads: 5x scaling 24 Hz
- * Fixed how locking was handled: 24 threads: 108 Hz, 23x scaling

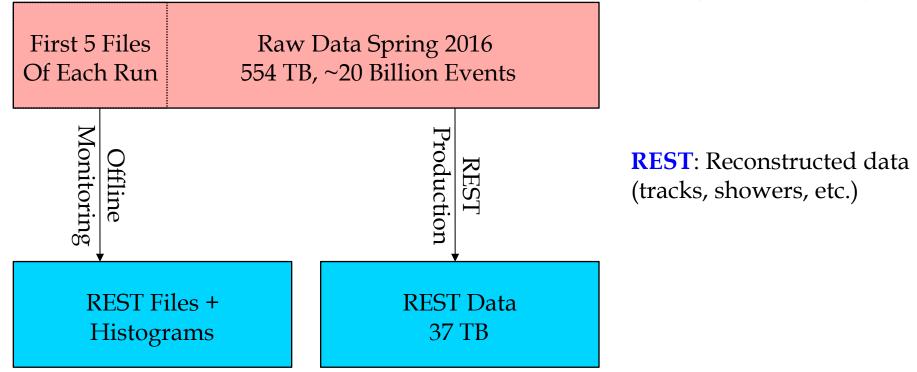


Monitoring Rate (April)

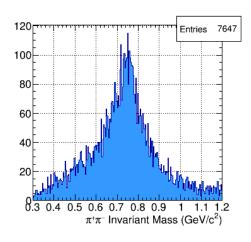
- * Issues with multi-threaded scaling: 24 threads: 5x scaling 24 Hz
- * Fixed how locking was handled: 24 threads: 108 Hz, 23x scaling

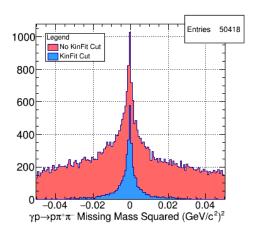


Monitoring Rate (April)

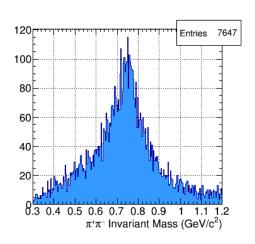

- * Issues with multi-threaded scaling: 24 threads: 5x scaling 24 Hz
- * Fixed how locking was handled: 24 threads: 108 Hz, 23x scaling
- * Current reconstruction: ~10Hz/thread

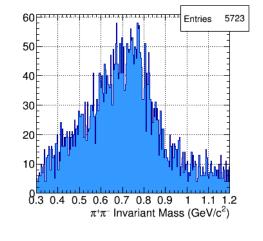
GLUE

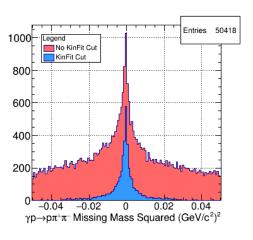

Production Overview (SWIF)

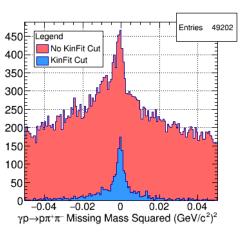


* Full reconstruction (tracks, showers, etc.)




Reconstruction ver01





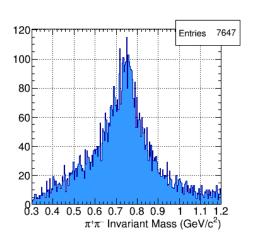
* Full reconstruction (tracks, showers, etc.)

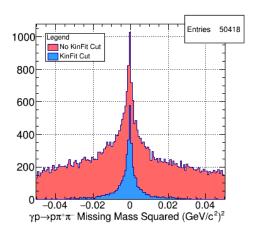
Reconstruction ver01

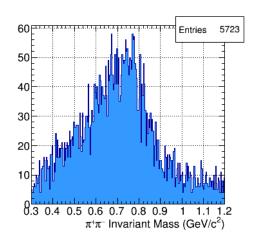
Reconstruction ver02

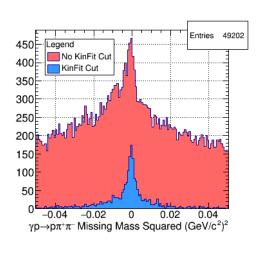
Ver02 problem:

- Track timing overhauled
- Lingering issues


Didn't notice before launch


- Not in existing monitoring
- Noticed after ~ 1 week




* Full reconstruction (tracks, showers, etc.)

Reconstruction ver01

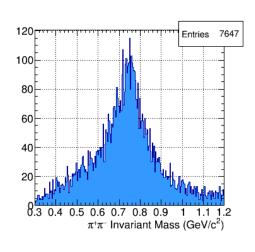
Reconstruction ver02

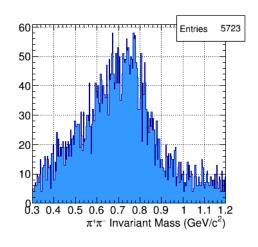
Ver02 problem:

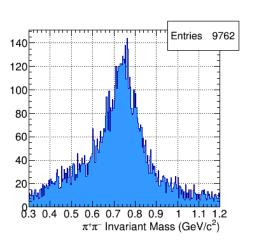
- Track timing overhauled
- Lingering issues

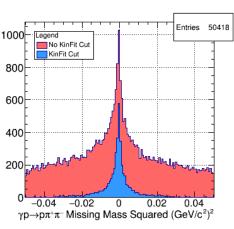
Didn't notice before launch

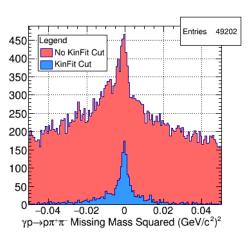
- Not in existing monitoring
- Noticed after ~ 1 week

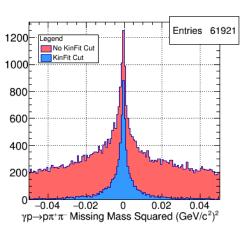

Remedy:


- New ρ , ω monitoring
- New reconstruction tests:
 - Cron every 3 days
 - 1-to-1 comparison






* Full reconstruction (tracks, showers, etc.)



Reconstruction ver01

Reconstruction ver02

Current

Reconstruction now better than ever!

Paul Mattione - GlueX Software Review - November 10, 2016

GlueX Analysis Software

JANA Analysis Library (C++)

- * Library overview (30+ active users):
 - * Provide: Best-practices, efficient, validated, user-friendly code
 - * GlueX program: > 100 channels to study: Must be easy, scalable
 - * Built on JANA: Multi-threaded, factory-based, EVIO or REST

JANA Analysis Library (C++)

- * Library overview (30+ active users):
 - * Provide: Best-practices, efficient, validated, user-friendly code
 - * GlueX program: > 100 channels to study: Must be easy, scalable
 - * Built on JANA: Multi-threaded, factory-based, EVIO or REST
- * User plugin: 15 30 minutes:
 - * Run perl script: Generates user plugin with example code
 - * In plugin, user specifies their reaction, sets control settings
 - * Optionally apply built-in/custom cuts, histogram

JANA Analysis Library (C++)

- * Library overview (30+ active users):
 - * Provide: Best-practices, efficient, validated, user-friendly code
 - * GlueX program: > 100 channels to study: Must be easy, scalable
 - * Built on JANA: Multi-threaded, factory-based, EVIO or REST
- * User plugin: 15 30 minutes:
 - * Run perl script: Generates user plugin with example code
 - * In plugin, user specifies their reaction, sets control settings
 - * Optionally apply built-in/custom cuts, histogram
- * Run with plugin: Automatically:
 - * Find all combos of reconstructed particles match the reaction
 - * Kinematic fit the reaction: Hypothesis test
 - * Runs user-selected cuts, histograms
 - * Save analysis data to ROOT trees for further analysis

$\gamma p \rightarrow \omega p$: Setup Reaction

- * DReaction: Collection of DReactionSteps
 - * Example code is auto-generated: Uncomment, modify

```
DReaction* locReaction = new DReaction("omega");
//g, p -> omega, p
DReactionStep* locReactionStep = new DReactionStep();
locReactionStep->Set InitialParticleID(Gamma);
locReactionStep->Set TargetParticleID(Proton);
locReactionStep->Add FinalParticleID(omega);
locReactionStep->Add FinalParticleID(Proton);
locReaction->Add ReactionStep(locReactionStep);
                                                                  DReactionSteps
//omega -> pi+, pi-, pi0
locReactionStep = new DReactionStep();
locReactionStep->Set InitialParticleID(omega);
locReactionStep->Add FinalParticleID(PiPlus);
locReactionStep->Add FinalParticleID(PiMinus);
locReactionStep->Add FinalParticleID(Pi0);
locReaction->Add ReactionStep(locReactionStep);
//pi0 -> q, q
                                                                   \gamma p \rightarrow \omega p
locReactionStep = new DReactionStep();
locReactionStep->Set InitialParticleID(Pi0);
                                                                         \omega \rightarrow \pi^+\pi^-\pi^0
locReactionStep->Add FinalParticleID(Gamma):
locReactionStep->Add FinalParticleID(Gamma);
locReaction->Add ReactionStep(locReactionStep);
                                                                              \pi^0 \rightarrow \gamma \gamma
```


- * Want to isolate a channel:
 - * GlueX detects: Beam- γ , final-state: $p \pi^+ \pi^- \gamma \gamma$

$$\gamma p \rightarrow \omega p$$

$$\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$$

$$\pi^{0} \rightarrow \gamma \gamma$$

* Build combinations of detected particles that match our channel

- * Want to isolate a channel:
 - * GlueX detects: Beam- γ , final-state: $p \pi^+ \pi^- \gamma \gamma$

$$\gamma p \rightarrow \omega p$$

$$\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$$

$$\pi^{0} \rightarrow \gamma \gamma$$

* Build combinations of detected particles that match our channel

For example:

Need: $2 q^+$, $1 q^-$, $2 q^0$

Measure: $2 q+, 1 q^-, 4 q^0$

Beam: 3 in-time γ 's

- * Want to isolate a channel:
 - * GlueX detects: Beam- γ , final-state: $p \pi^+ \pi^- \gamma \gamma$

$$\gamma p \rightarrow \omega p$$

$$\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$$

$$\pi^{0} \rightarrow \gamma \gamma$$

* Build combinations of detected particles that match our channel

For example:

Need: $2 q^+$, $1 q^-$, $2 q^0$

Measure: 2 q+, 1 q⁻, 4 q⁰

Beam: 3 in-time γ 's

Test each q^+ as p(2x), $\pi^+(1x)$

Test each q^- as π^- : 1x

Test each neutral as γ : 6x

Beam: 3x

Total: **36**

- * Want to isolate a channel:
 - * GlueX detects: Beam- γ , final-state: $p \pi^+ \pi^- \gamma \gamma$

$$\gamma p \rightarrow \omega p$$

$$\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$$

$$\pi^{0} \rightarrow \gamma \gamma$$

* Build combinations of detected particles that match our channel

For example:

Need: $2 q^+$, $1 q^-$, $2 q^0$

Measure: 2 q+, 1 q⁻, 4 q⁰

Beam: 3 in-time γ 's

Test each q^+ as p(2x), $\pi^+(1x)$

Test each q^- as π^- : 1x

Test each neutral as γ : 6x

Beam: 3x

Total: **36**

* Cuts reduce #-combos: Particle ID, missing mass, kinematic fit, etc.

Histogram, Cut Actions

- * Analysis actions: Particle ID, invariant mass histograms, etc.
 - * Share common base class
- * Are executed in order on particle combos
 - * If a combo fails a cut, it will stop executing actions on it

Histogram, Cut Actions

- * Analysis actions: Particle ID, invariant mass histograms, etc.
 - * Share common base class
- * Are executed in order on particle combos
 - * If a combo fails a cut, it will stop executing actions on it
- * Below: PID section performed before kinematic fit
 - * Fit not performed until needed (when results are requested)
 - Can reject background before fitting

Run the Analyses

* Tell JANA to run the analyses:

```
jerror_t DEventProcessor_p3pi_hists::evnt(jana::JEventLoop* locEventLoop, int locEventNumber)
{
    //Get the analysis results (drives the analysis)
    vector<const DAnalysisResults*> locAnalysisResultsVector;
    locEventLoop->Get(locAnalysisResultsVector);

    return NOERROR;
}
```

* Code is pre-generated for you: Just uncomment

OR: Run, Save to ROOT

* Or: Tell JANA to run the analyses, AND save to ROOT TTree:

DReaction:

```
// Highly Recommended: Enable ROOT TTree output for this DReaction
locReaction->Enable_TTreeOutput("tree_p3pi.root");
```

DEventProcessor:

```
jerror_t DEventProcessor_p3pi::evnt(JEventLoop* locEventLoop, uint64_t locEventNumber)
{
    const DEventWriterROOT* locEventWriterROOT = NULL;
    locEventLoop->GetSingle(locEventWriterROOT);
    locEventWriterROOT->Fill_DataTrees(locEventLoop, "p3pi");
    return NOERROR;
}
```


OR: Run, Save to ROOT

* Or: Tell JANA to run the analyses, AND save to ROOT TTree:

DReaction:

```
// Highly Recommended: Enable ROOT TTree output for this DReaction
locReaction->Enable_TTreeOutput("tree_p3pi.root");
```

DEventProcessor:

```
jerror_t DEventProcessor_p3pi::evnt(JEventLoop* locEventLoop, uint64_t locEventNumber)
{
    const DEventWriterROOT* locEventWriterROOT = NULL;
    locEventLoop->GetSingle(locEventWriterROOT);
    locEventWriterROOT->Fill_DataTrees(locEventLoop, "p3pi");
    return NOERROR;
}
```

- * TTree contents (PART format):
 - * Event info (Run #, event #, etc.) & metadata (your channel)
 - * Particles (beam, charged, neutral, MC thrown)
 - * Surviving combos for your channel

DSelector

- * ROOT TSelector class: Helps you work with TTrees
 - * Can generate code (TSelector) to read TTree, analyze data
 - * Knows nothing about GlueX data format

DSelector

- * ROOT TSelector class: Helps you work with TTrees
 - * Can generate code (TSelector) to read TTree, analyze data
 - * Knows nothing about GlueX data format
- * DSelector (GlueX):
 - * Inherits from TSelector: Can use in same way
 - * Provides C++ interface classes to TTree data (for particles, combos)

DSelector

- * ROOT TSelector class: Helps you work with TTrees
 - * Can generate code (TSelector) to read TTree, analyze data
 - * Knows nothing about GlueX data format
- * DSelector (GlueX):
 - * Inherits from TSelector: Can use in same way
 - * Provides C++ interface classes to TTree data (for particles, combos)
- * DSelector has knowledge of your analysis:
 - * Generates starting, example code for analyzing your channel
 - * Analysis actions: Similar to JANA
 - * Cut PID, histogram masses, cut kinematic fit, etc.

DSelector Usage

* Make a custom DSelector with:

```
MakeDSelector tree_file.root tree_name my_selector
```

* Run with:

```
root -l -b tree_file.root
root [1] .x $ROOT_ANALYSIS_HOME/scripts/Load_DSelector.C
root [2] tree_name->Process("DSelector_my_selector.C+");
```


DSelector Usage

* Make a custom DSelector with:

```
MakeDSelector tree_file.root tree_name my_selector
```

* Run with:

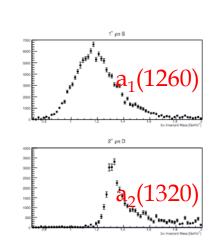
```
root -l -b tree_file.root
root [1] .x $ROOT_ANALYSIS_HOME/scripts/Load_DSelector.C
root [2] tree_name->Process("DSelector_my_selector.C+");
```

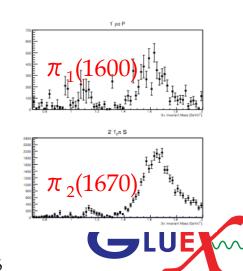
- * PROOF-Lite: Run multi-threaded over TChain on a node
 - * No change to DSelector code needed
 - * Already setup for users
 - * Run with:

```
root -l -b tree_file.root
root [1] .x $ROOT_ANALYSIS_HOME/scripts/Load_DSelector.C
root [2] DPROOFLiteManager::Process_Tree("tree_file.root",
    "tree_name", "my_selector.C+", "outfile.root", 4); //4 = #threads
```


Coordinating Collaboration Efforts

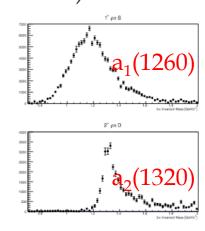
Analysis Coordinators: Paul Mattione (JSA), Justin Stevens (W&M)

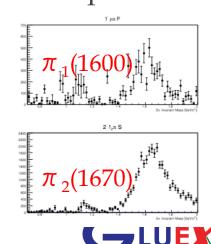




Physics & Analysis Workshops

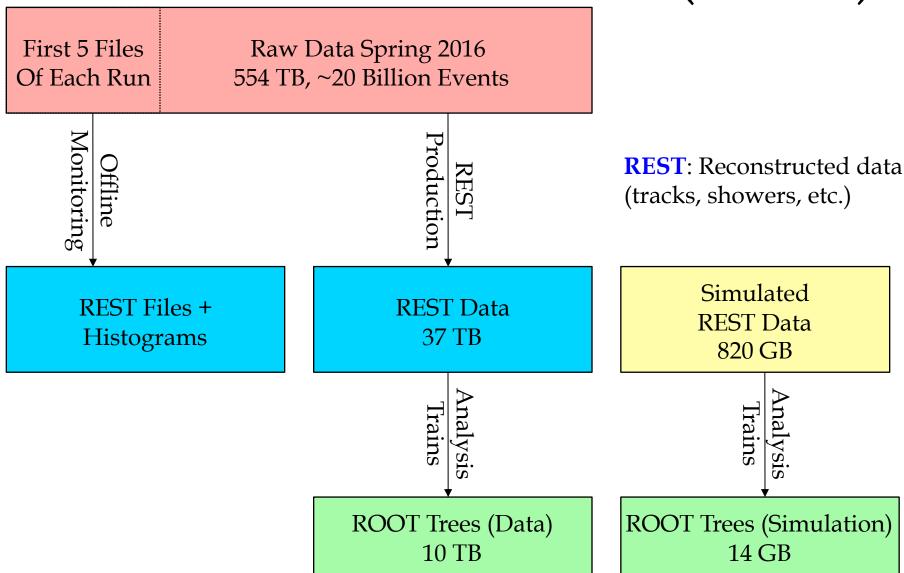
- * 2013: 35 registered participants, ~25 on-site
 - * Talks & exercises: Extracting $\pi_1(1600)$ hybrid in $\gamma p \rightarrow \pi^+ \pi^+ \pi^-(n)$
- * 2016: 57 registered participants, ~45 on-site
 - * Talks & exercises: Measuring $\gamma p \rightarrow \omega p$ polarization observables





Physics & Analysis Workshops

- * 2013: 35 registered participants, ~25 on-site
 - * Talks & exercises: Extracting $\pi_1(1600)$ hybrid in $\gamma p \rightarrow \pi^+ \pi^+ \pi^-(n)$
- * 2016: 57 registered participants, ~45 on-site
 - * Talks & exercises: Measuring $\gamma p \rightarrow \omega p$ polarization observables
- * Some software topics covered:
 - * Simulation, analysis library, ROOT analysis, batch farm, etc.
- * All sessions recorded (audio + screen): New user startup



Production Overview (SWIF)

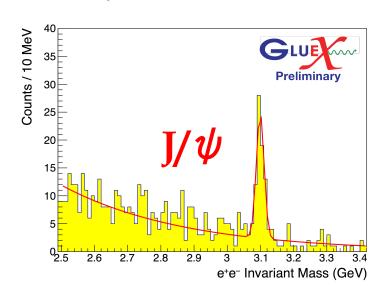
Analysis Trains (SWIF)

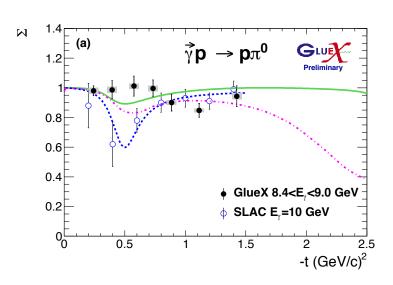
- * Analysis train: Run user JANA analysis plugins on REST data
 - * Produce ROOT trees for further analysis
- * Run every ~month on reconstructed data
- ★ Large collaboration participation: ~15 Users, ~50 Plugins

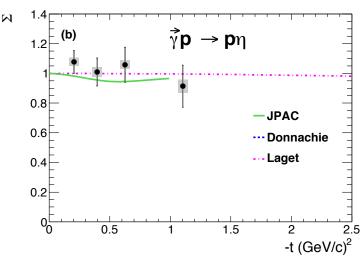
Analysis Trains (SWIF)

- * Analysis train: Run user JANA analysis plugins on REST data
 - * Produce ROOT trees for further analysis
- * Run every ~month on reconstructed data
- * Large collaboration participation: ~15 Users, ~50 Plugins
- * Wide variety of channels:
 - * Single meson: π^0 , π^+ , η , ρ , ω , η' , ϕ
 - * Multi-meson: 2π , 3π , 4π , 2η , $\eta \eta'$, $\pi \omega$, $\phi \eta$, KK, KK $\pi \pi$
 - * Strangeness studies: K^* 's, Λ , Σ 's, Σ^* 's, Λ^* 's, Ξ -
 - * Charm physics: J/ψ , $D^0\Lambda_c$
 - * Other: Antiproton, B-boson, multi- γ

Analysis Trains (SWIF)


- * Analysis train: Run user JANA analysis plugins on REST data
 - * Produce ROOT trees for further analysis
- * Run every ~month on reconstructed data
- * Large collaboration participation: ~15 Users, ~50 Plugins
- * Wide variety of channels:
 - * Single meson: π^0 , π^+ , η , ρ , ω , η' , ϕ
 - * Multi-meson: 2π , 3π , 4π , 2η , $\eta \eta'$, $\pi \omega$, $\phi \eta$, KK, KK $\pi \pi$
 - * Strangeness studies: K^* 's, Λ , Σ 's, Σ^* 's, Λ^* 's, Ξ -
 - * Charm physics: J/ψ , $D^0\Lambda_c$
 - * Other: Antiproton, B-boson, multi- γ
- * ROOT trees saved to cache/tape: Available for everyone's use





Early GlueX Physics: DNP

- * DNP Physics:
 - * Asymmetries: π^0 , η , ρ , ω , η'
 - * Peaks: $a_0(980)$, $b_1(1235)$, J/ψ ,...
 - * 4 months after end of run
- * Analysis software: Success!
 - * Many users, channels studied

Blue: Preparing for publication

Documentation

- * Extensive documentation:
 - * Monitoring: https://halldweb.jlab.org/wiki/index.php/Data_Monitoring_Procedures
 - * Analysis: https://halldweb.jlab.org/wiki/index.php/GlueX Analysis Software
 - * How-To's: https://halldweb.jlab.org/wiki/index.php/Offline HOWTO List
 - * Etc. etc.
- * Tracking collaboration analysis activities:
 - * https://halldweb.jlab.org/wiki-private/index.php/GlueX Physics Analyses
- * Workshops:
 - * 2016: https://halldweb.jlab.org/wiki/index.php/GlueX Physics Workshop 2016
 - * 2013: https://halldweb.jlab.org/wiki/index.php/GlueX Analysis Workshop 2013
- * YouTube channel (2016 Workshop): "Jefferson Lab Hall-D"
 - * https://www.youtube.com/channel/UCjI87hRy7U60CdkGpMSk2Fw

- * Offline data processing
 - Many calibrations automated (SWIF, still improving)
 - * Monitoring, reconstruction, & analysis: SWIF
 - * Software tests: Simulation, experiment, nightly build, etc.

* Offline data processing

- Many calibrations automated (SWIF, still improving)
- * Monitoring, reconstruction, & analysis: SWIF
- * Software tests: Simulation, experiment, nightly build, etc.

* Analysis software

- * Easy to use, best-practices analysis framework
- * Built-in actions for common tasks: No re-inventing the wheel
- * Mature: Library since 2012, 30+ active users

* Offline data processing

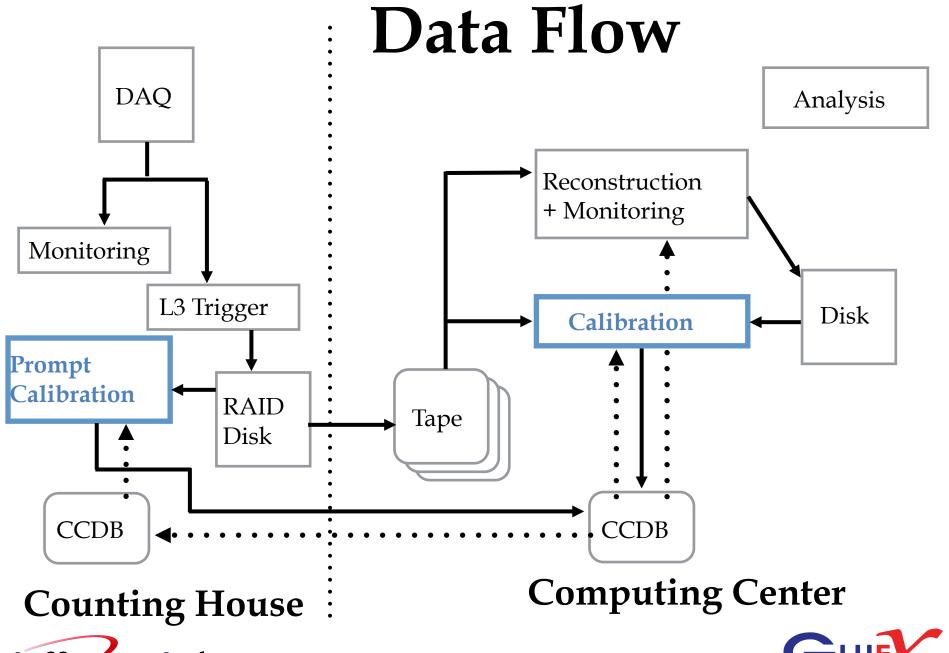
- * Many calibrations automated (SWIF, still improving)
- * Monitoring, reconstruction, & analysis: SWIF
- * Software tests: Simulation, experiment, nightly build, etc.

* Analysis software

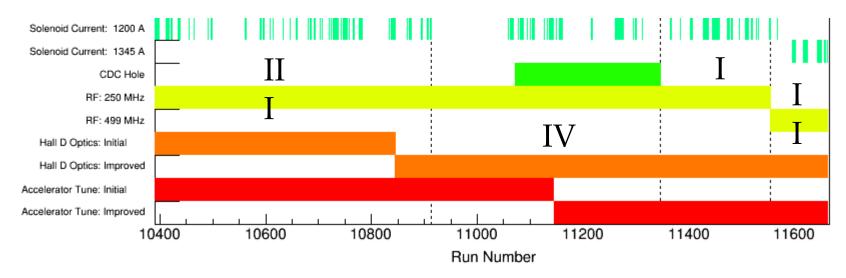
- * Easy to use, best-practices analysis framework
- * Built-in actions for common tasks: No re-inventing the wheel
- * Mature: Library since 2012, 30+ active users

* Collaboration

- * 2013, 2016 Workshops: Software, physics, & analysis
- Many early results shown at DNP
- * First publication under collaboration review



Reference Slides

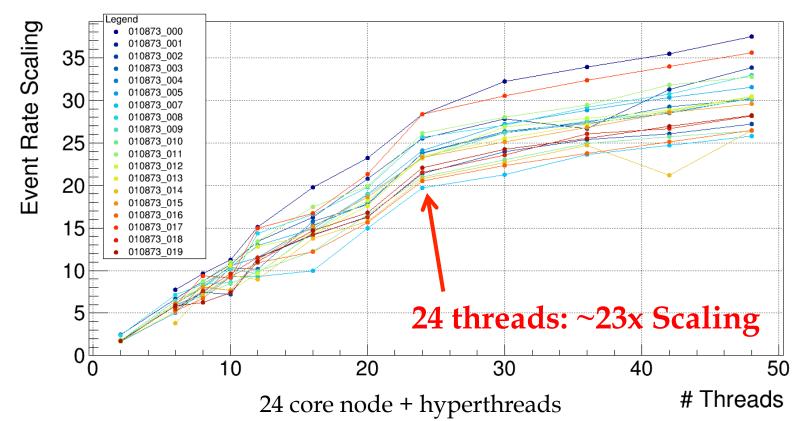


Jefferson Lab

REST Production (ver01)

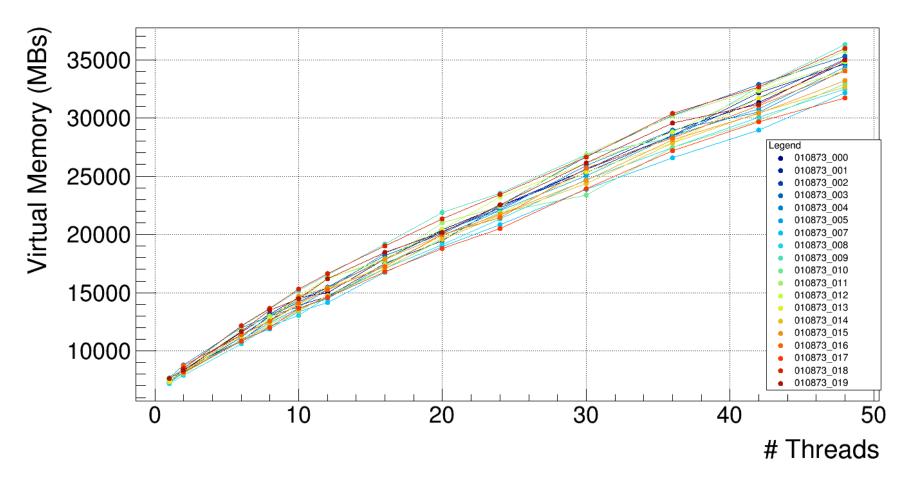
- Planned for May 31th, started June 8th
- Included number of plugins for performance studies (detector efficiency, track reconstruction)
- Split the Data into 4 priority periods

- Intermittent with periods waiting for detector calibration
- Successfully completed July 10th, 21d net processing time
- Failure rate after resubmissions: ~0.1%


Slide courtesy Alex Austregesilo

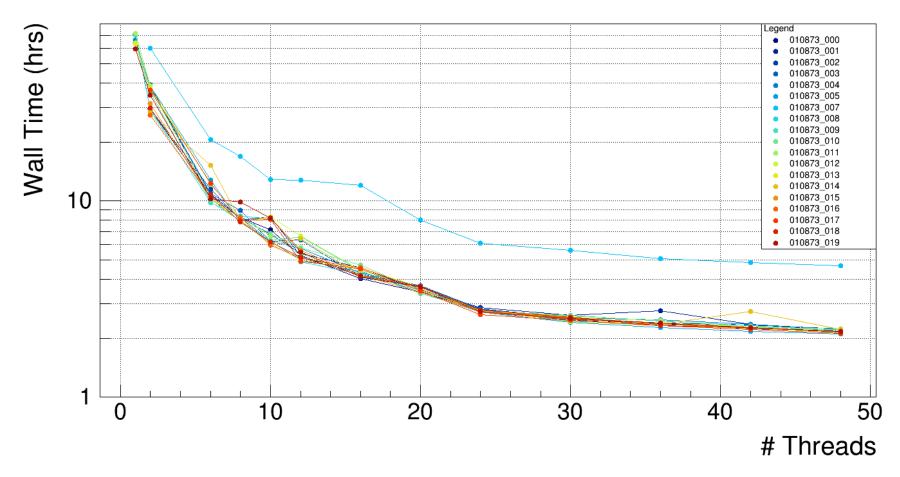
Multi-threaded Scaling: April

- * Compartmentalized histogram locks
- * At 24 threads, ~23x scaling: 450% improvement, within 5% of max



Virtual Memory

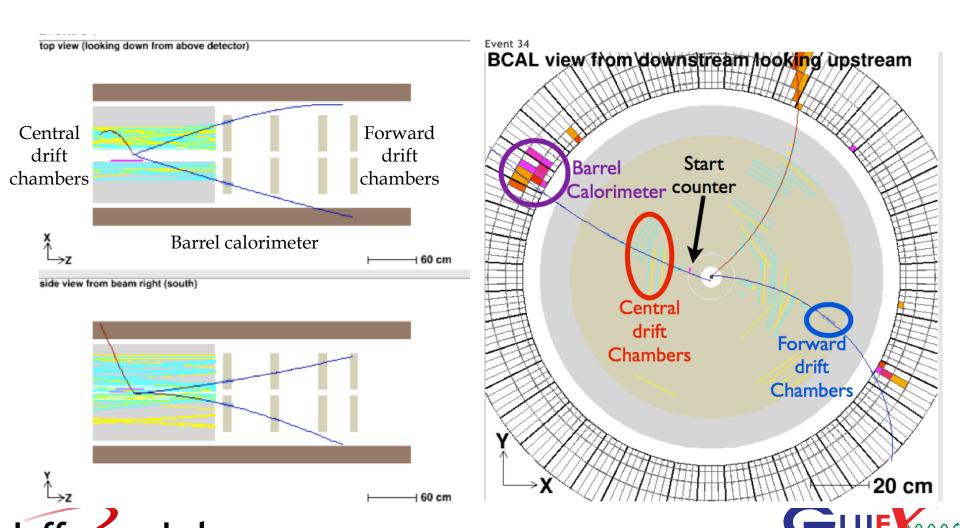
* Virtual memory: Max allowed is node-RAM / 0.7



Scaling: ~612 MB / thread

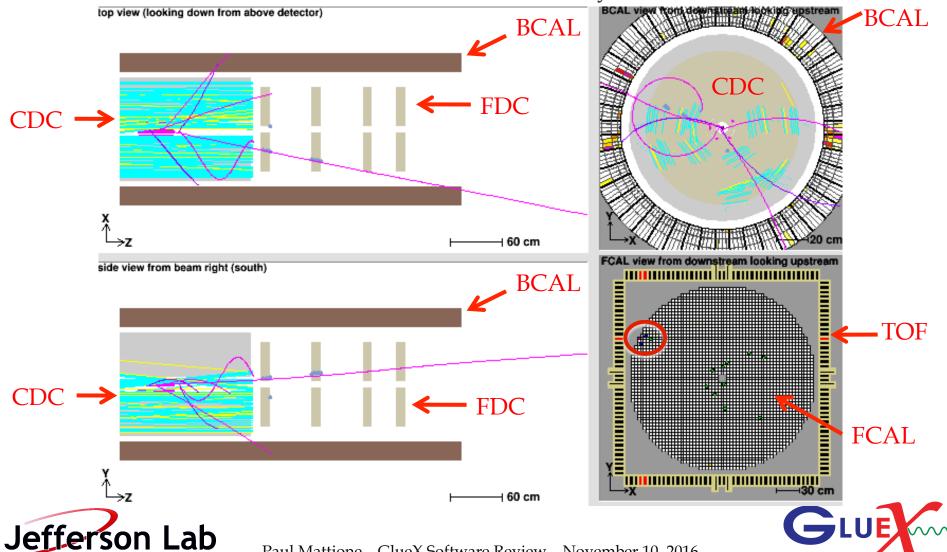
Wall Time

* At 24 threads, takes < 3 hrs



At 1 thread, many jobs timeout!!

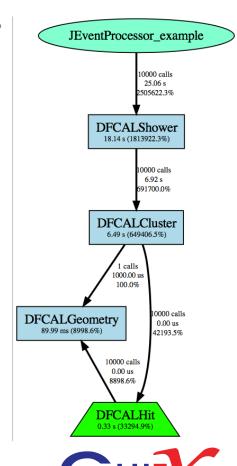
Example Reconstructed Event


* Tracks, calorimeter showers reconstructed, correlated

Reconstructed Events

Detector correlation: Tracks, calorimeter showers reconstructed *

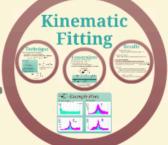
From online reconstruction, first few days of beam



JANA

- * JANA: Multithreaded, factory-based, plugin-driven
 - * Factory: Dedicated code for creating objects of that type
- * User writes plugin to drive reconstruction/analysis
 - * Perl script generates template code

E.g. Plugin for FCAL reconstruction (called every event)- Factory calls on right (**DFCALHit** from file)


```
#include <FCAL/DFCALShower.h>
jerror_t JEventProcessor_example::evnt(JEventLoop* loop, int EventNum)
{
    vector<const DFCALShower*> locFCALShowers;
    loop->Get(locFCALShowers);
    return NOERROR;
}
```


Analysis

- Plugin DReaction: Reaction, analysis
- DANA: Create particle combos
- · DANA: Kinematic fit, make combos
- DANA: Execute analysis actions
- Plugin processor: Save results

Thrown Particles

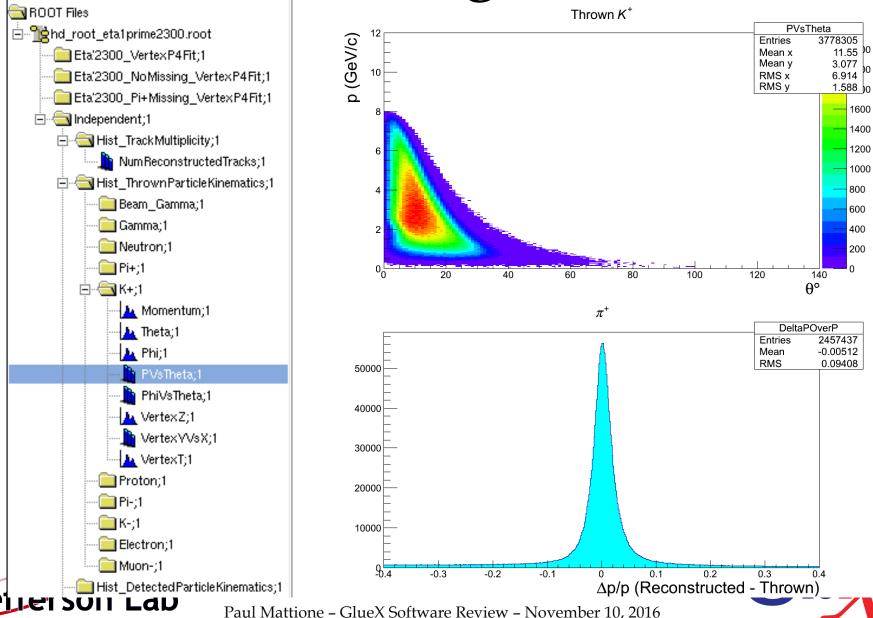
Three DMCThrown factories:
Default (all), tag="Decaying," tag="FinalState"
DMCThrown "parentid" = parent "myid"

DMCThrownMatching:

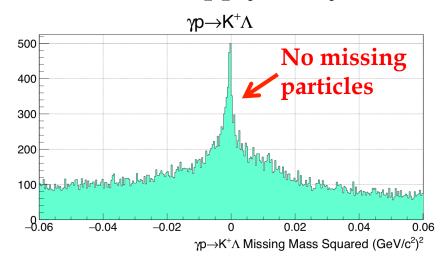
- Thrown Reconstructed
- Charged & neutral hypotheses: by 56
- FCAL & TOF: by & BCAL: by angle

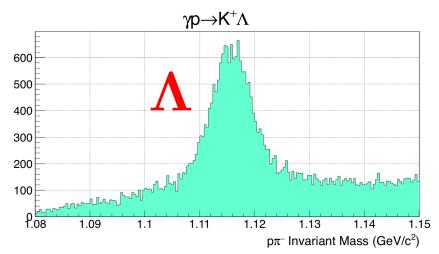
Other factories:

- DReaction tag="Thrown"
- DParticleCombo tag="Throw



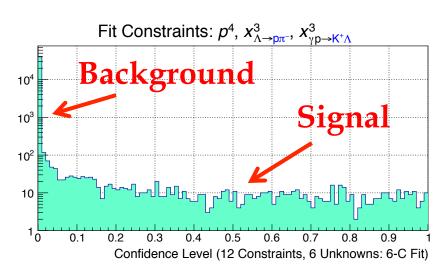
ROOT TTree Format




Example Histogram Actions

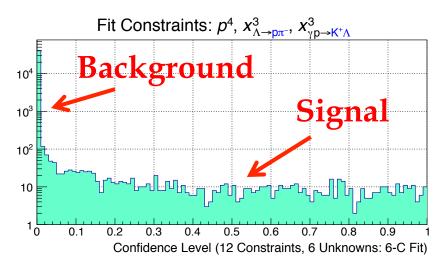
Kinematic Fitting (C++)

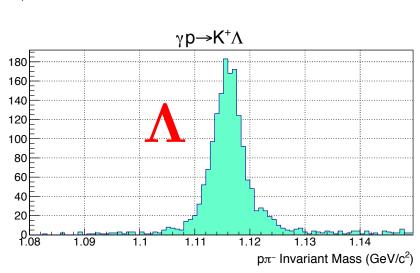
- * Want to do strange-quark (Λ) physics
 - * Backgrounds, e.g. $\gamma p \rightarrow p \pi^+ \pi^-$
- * Hypothesis test: Fit the data
 - * Was this event the reaction I want?
- * Constrain the data to match your reaction (minimize χ^2)
- * Powerful: Apply many constraints simultaneously



A Reconstruction

- * Constraints:
 - * E & p conservation
 - * Production vertex, decay vertex
 - * Over-constrained: 6 DF
- * Confidence level: Cut near zero
- ★ Clean \(\text{peak (mass not constrained)}\)




GLUE

Very low background: Clean ∧ selection!!

A Reconstruction

- * Constraints:
 - * E & p conservation
 - * Production vertex, decay vertex
 - * Over-constrained: 6 DF
- * Confidence level: Cut near zero
- ★ Clean \(\Lambda \) peak (mass not constrained)

Very low background: Clean ∧ selection!!

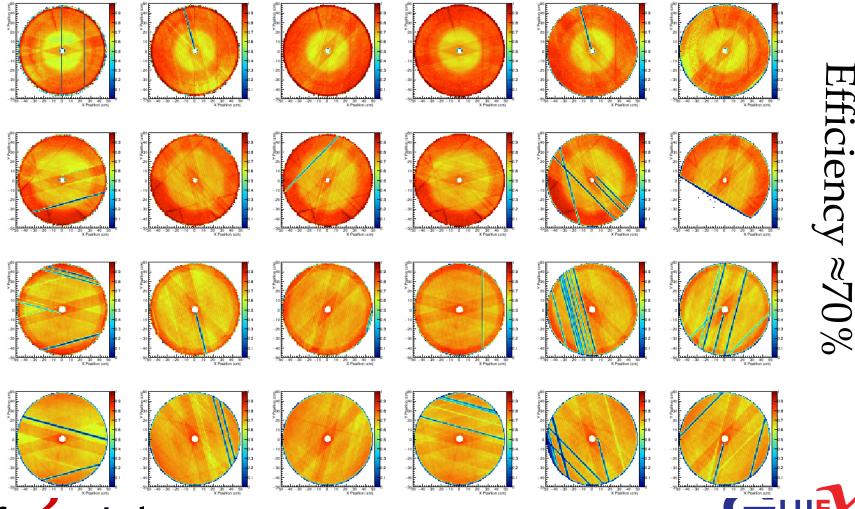
Paul Mattione - GlueX Software Review - November 10, 2016

Analysis Tracking

* Coordinate collaboration efforts for understanding data

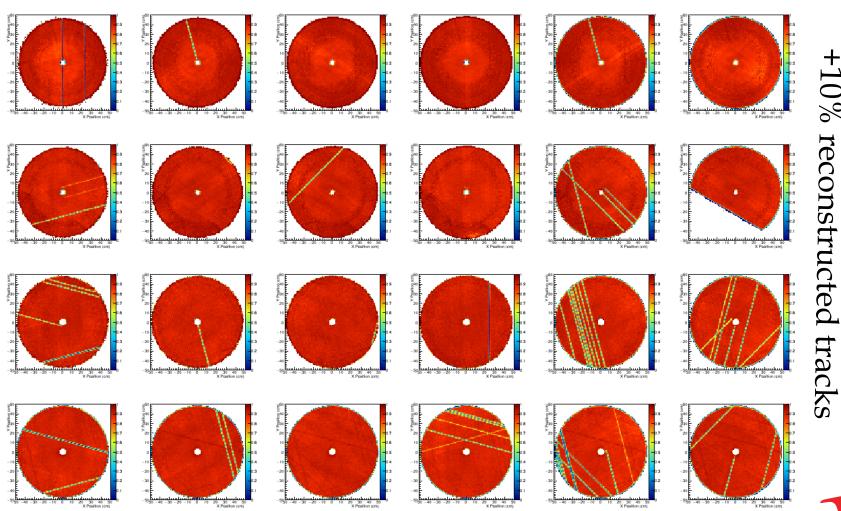
Non-Strange Meson Channels [edit]

Channel	Topology(ies)	Measurement(s)	Analyzer(s)	Status	Analysis/Presentations/Documents
πº	γρ→π ⁰ ρ, π ⁰ →γγ	Σ Asym., dσ/dθ, Effic. Study	Sebastian Cole, George Vasileiadis, Justin Stevens, Igor Strakovsky, David Mack, Zhenyu Zhang		Example plugin ਲੂ and Event Generator ਲੂ
η	γρ→ηρ, η→γγ	Efficiency Study	Will McGinley, Sebastian Cole, Regina, David Mack, Zhenyu Zhang		Example plugin ₪
	γp→ηp, η→π ⁺ π ⁻ π ⁰	Efficiency Study, Dalitz Analysis	Will McGinley, Simon Taylor, Regina		Example plugin ஓ
	γp→η ^(') p, η ^(') →e+e⁻γ	Efficiency Study, TFF	Cristiano Fanelli, MIT		
ης	γp→η _c p, η _c →K+K ⁻ π ⁰	Effic. Studies	Maria Patsyuk		
ω	γρ→ωρ, ω→π+ππ0	Σ Asym., dσ/dt, SDME, Effic. Study, Dalitz Analysis	Alex Barnes, Mike Staib, Alex Somov, Alyssa Henderson, Sebastian Cole, Paul Mattione		Example plugin ਲੂ, Tutorial ਲੂ
	$\gamma p \rightarrow \omega p, \omega \rightarrow \pi^0 \gamma$	Σ Asym., dσ/dt, SDME, Effic. Study	Mike Staib, Alex Somov		Example plugin ₪
	$\gamma p \rightarrow \omega p, \ \omega \rightarrow \pi^0 \gamma, \ \omega \rightarrow \pi^+ \pi^- \pi^0$	Calorimeter Effic. Study	Jon Zarling		Example plugin _ਫ ਰ
η'	γρ→η'ρ, η'→π⁺π'η	Bump Hunt	Regina, FIU		Example plugin &



FDC Hit Efficiencies (Alex A.)

Pseudo hit = wire position + clusters in both cathodes (position along wire)


• Requires matching position perpendicular to wire and timing

FDC Hit Efficiencies (Alex A.)

Pseudo hit = wire position + clusters in both cathodes (position along wire)

• Requires matching position perpendicular to wire and timing

Jefferson Lab

Detector/Reconstruction Studies

* Beam:

- * Beam Polarization (Talks by Justin & Mike D.)
- * Beam Energy (Talk by Alex D.)
- * Beam Flux (Talk by Justin)

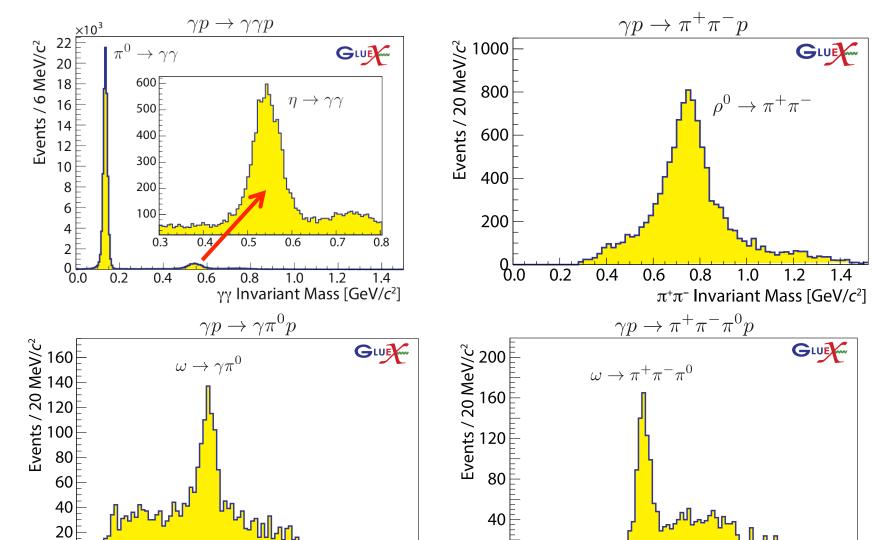
* Tracking

- * CDC Hit Efficiency (Mike S.)
- * FDC Hit Efficiency (Alex A.)
- * Track Reconstruction (Talk by Simon)
- * Track Resolution & Efficiency (Paul M.)

* TOF/SC:

- * TOF Efficiency (Beni)
- * SC Efficiency (Mahmoud)

Detector/Reconstruction Studies


- * BCAL:
 - * Neutral Energy & Efficiency
 - * Hadronic Energy & Efficiency (Elton)
 - * Covariance Matrix (Mark D., testing soon)
- * FCAL:
 - * Neutral Energy & Efficiency (Jon Z.)
 - * Hadronic Energy & Efficiency
 - * Covariance Matrix (Mark D., testing soon)
- * Channel reconstruction, triggering, & acceptance:
 - * Triggering (Talk by Alex S.)
 - * Magnetic field comparison
 - * ρ (Alex A.), 4π (Alex A.), ω (Mike S.), ϕ (Alex B., see his talk)

2.0

Reconstructed Meson Peaks

0.0

0.4

8.0

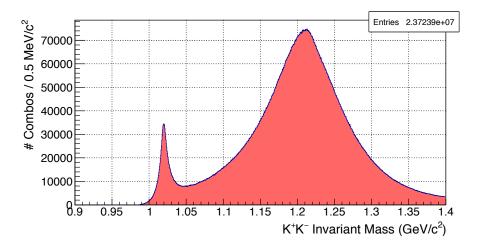
2.0

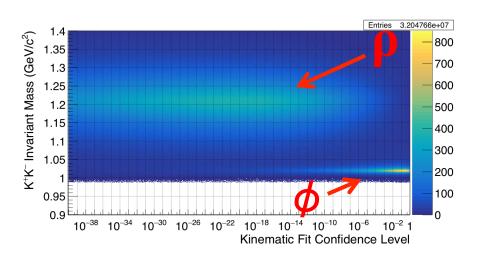
1.2

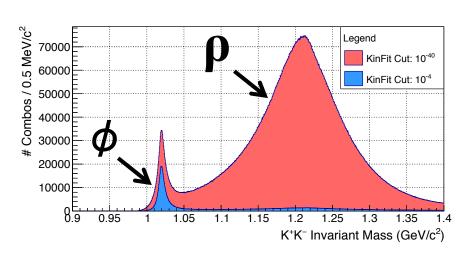
1.6

 $\gamma \pi^0$ Invariant Mass [GeV/ c^2]

0.0


0.4


8.0


 $\pi^+\pi^-\pi^0$ Invariant Mass [GeV/ c^2]

$\gamma p \rightarrow pK^+K^-$

* Use KinFit cut to ~remove ρ

