GlueX Data Analysis Paul Mattione (JSA) #### Outline - * Offline data processing: - * Calibration, monitoring, & reconstruction - * GlueX analysis software - * Coordinating collaboration analysis efforts ## Offline Data Processing Offline data processing team: Paul Mattione (JSA), Sean Dobbs (NWU), Alex Austregesilo (JSA), Thomas Britton (JSA) > Previous members: Justin Stevens (W&M), Kei Moriya #### Calibration Automation - ★ Batch farm calibration train (SWIF) - * Run plugins & scripts to automatically calibrate data - * Timing offsets, drift time-to-distance, tagger time-walk, SC, etc. - * Multiple passes: Dependencies - * Calibration constants published once human-verified #### Calibration Automation - ★ Batch farm calibration train (SWIF) - * Run plugins & scripts to automatically calibrate data - * Timing offsets, drift time-to-distance, tagger time-walk, SC, etc. - * Multiple passes: Dependencies - * Calibration constants published once human-verified - * Some (complex) procedures not finalized/automated yet - * E.g. TOF, π^0 , Tagger/PS calibrations - * Skims created to speed up calibrations #### Calibration Automation - ★ Batch farm calibration train (SWIF) - * Run plugins & scripts to automatically calibrate data - * Timing offsets, drift time-to-distance, tagger time-walk, SC, etc. - * Multiple passes: Dependencies - * Calibration constants published once human-verified - * Some (complex) procedures not finalized/automated yet - * E.g. TOF, π^0 , Tagger/PS calibrations - * Skims created to speed up calibrations - * Prompt calibrations: - * Spring 2016: ~Weekly calibration trains, 1st recon. ~3 weeks after start - * Fall 2016: Calibrate as data hits the tape - * Future: Run calibrations online ### Production Overview (SWIF) **REST**: Reconstructed data (tracks, showers, etc.) # Offline Monitoring (SWIF) - * Run 40 JANA plugins: Occupancies, calibrations, reconstruction - * Incoming data (cron), + every ~2 weeks (as changes come in) #### Offline Data Monitoring: Plot Browser Select Run Period: RunPeriod-2016-02 ct and Recon. Version: ver00 RootSpy Select plot to display: CDC Occupancy ct and run number range to query: 11554 11568 Display Add additional MYSQL query requirements as string: eg. and beam_current>20 and solenoid_current>1190 Add additional RCDB query requirements as string: eg. gis_production eg. @is_production Note: Click on figure to open larger image in new tab, or click on Run # to open runBrowser page for that Run. # Offline Monitoring (SWIF) Web browse plots, can browse (& download) ROOT files BCALInvMass B/FCALInvMass Trigger ## Monitoring Rate (April) - * Issues with multi-threaded scaling: 24 threads: 5x scaling 24 Hz - * Fixed how locking was handled: 24 threads: 108 Hz, 23x scaling ## Monitoring Rate (April) - * Issues with multi-threaded scaling: 24 threads: 5x scaling 24 Hz - * Fixed how locking was handled: 24 threads: 108 Hz, 23x scaling ## Monitoring Rate (April) - * Issues with multi-threaded scaling: 24 threads: 5x scaling 24 Hz - * Fixed how locking was handled: 24 threads: 108 Hz, 23x scaling - * Current reconstruction: ~10Hz/thread GLUE ### Production Overview (SWIF) * Full reconstruction (tracks, showers, etc.) Reconstruction ver01 * Full reconstruction (tracks, showers, etc.) Reconstruction ver01 Reconstruction ver02 #### Ver02 problem: - Track timing overhauled - Lingering issues #### Didn't notice before launch - Not in existing monitoring - Noticed after ~ 1 week * Full reconstruction (tracks, showers, etc.) Reconstruction ver01 #### Reconstruction ver02 #### Ver02 problem: - Track timing overhauled - Lingering issues #### Didn't notice before launch - Not in existing monitoring - Noticed after ~ 1 week #### **Remedy:** - New ρ , ω monitoring - New reconstruction tests: - Cron every 3 days - 1-to-1 comparison * Full reconstruction (tracks, showers, etc.) Reconstruction ver01 Reconstruction ver02 Current Reconstruction now better than ever! Paul Mattione - GlueX Software Review - November 10, 2016 ## GlueX Analysis Software # JANA Analysis Library (C++) - * Library overview (30+ active users): - * Provide: Best-practices, efficient, validated, user-friendly code - * GlueX program: > 100 channels to study: Must be easy, scalable - * Built on JANA: Multi-threaded, factory-based, EVIO or REST # JANA Analysis Library (C++) - * Library overview (30+ active users): - * Provide: Best-practices, efficient, validated, user-friendly code - * GlueX program: > 100 channels to study: Must be easy, scalable - * Built on JANA: Multi-threaded, factory-based, EVIO or REST - * User plugin: 15 30 minutes: - * Run perl script: Generates user plugin with example code - * In plugin, user specifies their reaction, sets control settings - * Optionally apply built-in/custom cuts, histogram # JANA Analysis Library (C++) - * Library overview (30+ active users): - * Provide: Best-practices, efficient, validated, user-friendly code - * GlueX program: > 100 channels to study: Must be easy, scalable - * Built on JANA: Multi-threaded, factory-based, EVIO or REST - * User plugin: 15 30 minutes: - * Run perl script: Generates user plugin with example code - * In plugin, user specifies their reaction, sets control settings - * Optionally apply built-in/custom cuts, histogram - * Run with plugin: Automatically: - * Find all combos of reconstructed particles match the reaction - * Kinematic fit the reaction: Hypothesis test - * Runs user-selected cuts, histograms - * Save analysis data to ROOT trees for further analysis # $\gamma p \rightarrow \omega p$: Setup Reaction - * DReaction: Collection of DReactionSteps - * Example code is auto-generated: Uncomment, modify ``` DReaction* locReaction = new DReaction("omega"); //g, p -> omega, p DReactionStep* locReactionStep = new DReactionStep(); locReactionStep->Set InitialParticleID(Gamma); locReactionStep->Set TargetParticleID(Proton); locReactionStep->Add FinalParticleID(omega); locReactionStep->Add FinalParticleID(Proton); locReaction->Add ReactionStep(locReactionStep); DReactionSteps //omega -> pi+, pi-, pi0 locReactionStep = new DReactionStep(); locReactionStep->Set InitialParticleID(omega); locReactionStep->Add FinalParticleID(PiPlus); locReactionStep->Add FinalParticleID(PiMinus); locReactionStep->Add FinalParticleID(Pi0); locReaction->Add ReactionStep(locReactionStep); //pi0 -> q, q \gamma p \rightarrow \omega p locReactionStep = new DReactionStep(); locReactionStep->Set InitialParticleID(Pi0); \omega \rightarrow \pi^+\pi^-\pi^0 locReactionStep->Add FinalParticleID(Gamma): locReactionStep->Add FinalParticleID(Gamma); locReaction->Add ReactionStep(locReactionStep); \pi^0 \rightarrow \gamma \gamma ``` - * Want to isolate a channel: - * GlueX detects: Beam- γ , final-state: $p \pi^+ \pi^- \gamma \gamma$ $$\gamma p \rightarrow \omega p$$ $$\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$$ $$\pi^{0} \rightarrow \gamma \gamma$$ * Build combinations of detected particles that match our channel - * Want to isolate a channel: - * GlueX detects: Beam- γ , final-state: $p \pi^+ \pi^- \gamma \gamma$ $$\gamma p \rightarrow \omega p$$ $$\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$$ $$\pi^{0} \rightarrow \gamma \gamma$$ * Build combinations of detected particles that match our channel #### For example: Need: $2 q^+$, $1 q^-$, $2 q^0$ Measure: $2 q+, 1 q^-, 4 q^0$ Beam: 3 in-time γ 's - * Want to isolate a channel: - * GlueX detects: Beam- γ , final-state: $p \pi^+ \pi^- \gamma \gamma$ $$\gamma p \rightarrow \omega p$$ $$\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$$ $$\pi^{0} \rightarrow \gamma \gamma$$ * Build combinations of detected particles that match our channel #### For example: Need: $2 q^+$, $1 q^-$, $2 q^0$ Measure: 2 q+, 1 q⁻, 4 q⁰ Beam: 3 in-time γ 's Test each q^+ as p(2x), $\pi^+(1x)$ Test each q^- as π^- : 1x Test each neutral as γ : 6x Beam: 3x Total: **36** - * Want to isolate a channel: - * GlueX detects: Beam- γ , final-state: $p \pi^+ \pi^- \gamma \gamma$ $$\gamma p \rightarrow \omega p$$ $$\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$$ $$\pi^{0} \rightarrow \gamma \gamma$$ * Build combinations of detected particles that match our channel #### For example: Need: $2 q^+$, $1 q^-$, $2 q^0$ Measure: 2 q+, 1 q⁻, 4 q⁰ Beam: 3 in-time γ 's Test each q^+ as p(2x), $\pi^+(1x)$ Test each q^- as π^- : 1x Test each neutral as γ : 6x Beam: 3x Total: **36** * Cuts reduce #-combos: Particle ID, missing mass, kinematic fit, etc. ### Histogram, Cut Actions - * Analysis actions: Particle ID, invariant mass histograms, etc. - * Share common base class - * Are executed in order on particle combos - * If a combo fails a cut, it will stop executing actions on it ### Histogram, Cut Actions - * Analysis actions: Particle ID, invariant mass histograms, etc. - * Share common base class - * Are executed in order on particle combos - * If a combo fails a cut, it will stop executing actions on it - * Below: PID section performed before kinematic fit - * Fit not performed until needed (when results are requested) - Can reject background before fitting ## Run the Analyses * Tell JANA to run the analyses: ``` jerror_t DEventProcessor_p3pi_hists::evnt(jana::JEventLoop* locEventLoop, int locEventNumber) { //Get the analysis results (drives the analysis) vector<const DAnalysisResults*> locAnalysisResultsVector; locEventLoop->Get(locAnalysisResultsVector); return NOERROR; } ``` * Code is pre-generated for you: Just uncomment ### OR: Run, Save to ROOT * Or: Tell JANA to run the analyses, AND save to ROOT TTree: #### **DReaction**: ``` // Highly Recommended: Enable ROOT TTree output for this DReaction locReaction->Enable_TTreeOutput("tree_p3pi.root"); ``` #### **DEventProcessor:** ``` jerror_t DEventProcessor_p3pi::evnt(JEventLoop* locEventLoop, uint64_t locEventNumber) { const DEventWriterROOT* locEventWriterROOT = NULL; locEventLoop->GetSingle(locEventWriterROOT); locEventWriterROOT->Fill_DataTrees(locEventLoop, "p3pi"); return NOERROR; } ``` ### OR: Run, Save to ROOT * Or: Tell JANA to run the analyses, AND save to ROOT TTree: #### **DReaction**: ``` // Highly Recommended: Enable ROOT TTree output for this DReaction locReaction->Enable_TTreeOutput("tree_p3pi.root"); ``` #### **DEventProcessor:** ``` jerror_t DEventProcessor_p3pi::evnt(JEventLoop* locEventLoop, uint64_t locEventNumber) { const DEventWriterROOT* locEventWriterROOT = NULL; locEventLoop->GetSingle(locEventWriterROOT); locEventWriterROOT->Fill_DataTrees(locEventLoop, "p3pi"); return NOERROR; } ``` - * TTree contents (PART format): - * Event info (Run #, event #, etc.) & metadata (your channel) - * Particles (beam, charged, neutral, MC thrown) - * Surviving combos for your channel #### **DSelector** - * ROOT TSelector class: Helps you work with TTrees - * Can generate code (TSelector) to read TTree, analyze data - * Knows nothing about GlueX data format #### **DSelector** - * ROOT TSelector class: Helps you work with TTrees - * Can generate code (TSelector) to read TTree, analyze data - * Knows nothing about GlueX data format - * DSelector (GlueX): - * Inherits from TSelector: Can use in same way - * Provides C++ interface classes to TTree data (for particles, combos) #### **DSelector** - * ROOT TSelector class: Helps you work with TTrees - * Can generate code (TSelector) to read TTree, analyze data - * Knows nothing about GlueX data format - * DSelector (GlueX): - * Inherits from TSelector: Can use in same way - * Provides C++ interface classes to TTree data (for particles, combos) - * DSelector has knowledge of your analysis: - * Generates starting, example code for analyzing your channel - * Analysis actions: Similar to JANA - * Cut PID, histogram masses, cut kinematic fit, etc. # DSelector Usage * Make a custom DSelector with: ``` MakeDSelector tree_file.root tree_name my_selector ``` * Run with: ``` root -l -b tree_file.root root [1] .x $ROOT_ANALYSIS_HOME/scripts/Load_DSelector.C root [2] tree_name->Process("DSelector_my_selector.C+"); ``` # DSelector Usage * Make a custom DSelector with: ``` MakeDSelector tree_file.root tree_name my_selector ``` * Run with: ``` root -l -b tree_file.root root [1] .x $ROOT_ANALYSIS_HOME/scripts/Load_DSelector.C root [2] tree_name->Process("DSelector_my_selector.C+"); ``` - * PROOF-Lite: Run multi-threaded over TChain on a node - * No change to DSelector code needed - * Already setup for users - * Run with: ``` root -l -b tree_file.root root [1] .x $ROOT_ANALYSIS_HOME/scripts/Load_DSelector.C root [2] DPROOFLiteManager::Process_Tree("tree_file.root", "tree_name", "my_selector.C+", "outfile.root", 4); //4 = #threads ``` # Coordinating Collaboration Efforts Analysis Coordinators: Paul Mattione (JSA), Justin Stevens (W&M) # Physics & Analysis Workshops - * 2013: 35 registered participants, ~25 on-site - * Talks & exercises: Extracting $\pi_1(1600)$ hybrid in $\gamma p \rightarrow \pi^+ \pi^+ \pi^-(n)$ - * 2016: 57 registered participants, ~45 on-site - * Talks & exercises: Measuring $\gamma p \rightarrow \omega p$ polarization observables # Physics & Analysis Workshops - * 2013: 35 registered participants, ~25 on-site - * Talks & exercises: Extracting $\pi_1(1600)$ hybrid in $\gamma p \rightarrow \pi^+ \pi^+ \pi^-(n)$ - * 2016: 57 registered participants, ~45 on-site - * Talks & exercises: Measuring $\gamma p \rightarrow \omega p$ polarization observables - * Some software topics covered: - * Simulation, analysis library, ROOT analysis, batch farm, etc. - * All sessions recorded (audio + screen): New user startup ### Production Overview (SWIF) ### Analysis Trains (SWIF) - * Analysis train: Run user JANA analysis plugins on REST data - * Produce ROOT trees for further analysis - * Run every ~month on reconstructed data - ★ Large collaboration participation: ~15 Users, ~50 Plugins ## Analysis Trains (SWIF) - * Analysis train: Run user JANA analysis plugins on REST data - * Produce ROOT trees for further analysis - * Run every ~month on reconstructed data - * Large collaboration participation: ~15 Users, ~50 Plugins - * Wide variety of channels: - * Single meson: π^0 , π^+ , η , ρ , ω , η' , ϕ - * Multi-meson: 2π , 3π , 4π , 2η , $\eta \eta'$, $\pi \omega$, $\phi \eta$, KK, KK $\pi \pi$ - * Strangeness studies: K^* 's, Λ , Σ 's, Σ^* 's, Λ^* 's, Ξ - - * Charm physics: J/ψ , $D^0\Lambda_c$ - * Other: Antiproton, B-boson, multi- γ ## Analysis Trains (SWIF) - * Analysis train: Run user JANA analysis plugins on REST data - * Produce ROOT trees for further analysis - * Run every ~month on reconstructed data - * Large collaboration participation: ~15 Users, ~50 Plugins - * Wide variety of channels: - * Single meson: π^0 , π^+ , η , ρ , ω , η' , ϕ - * Multi-meson: 2π , 3π , 4π , 2η , $\eta \eta'$, $\pi \omega$, $\phi \eta$, KK, KK $\pi \pi$ - * Strangeness studies: K^* 's, Λ , Σ 's, Σ^* 's, Λ^* 's, Ξ - - * Charm physics: J/ψ , $D^0\Lambda_c$ - * Other: Antiproton, B-boson, multi- γ - * ROOT trees saved to cache/tape: Available for everyone's use ## Early GlueX Physics: DNP - * DNP Physics: - * Asymmetries: π^0 , η , ρ , ω , η' - * Peaks: $a_0(980)$, $b_1(1235)$, J/ψ ,... - * 4 months after end of run - * Analysis software: Success! - * Many users, channels studied **Blue**: Preparing for publication #### Documentation - * Extensive documentation: - * Monitoring: https://halldweb.jlab.org/wiki/index.php/Data_Monitoring_Procedures - * Analysis: https://halldweb.jlab.org/wiki/index.php/GlueX Analysis Software - * How-To's: https://halldweb.jlab.org/wiki/index.php/Offline HOWTO List - * Etc. etc. - * Tracking collaboration analysis activities: - * https://halldweb.jlab.org/wiki-private/index.php/GlueX Physics Analyses - * Workshops: - * 2016: https://halldweb.jlab.org/wiki/index.php/GlueX Physics Workshop 2016 - * 2013: https://halldweb.jlab.org/wiki/index.php/GlueX Analysis Workshop 2013 - * YouTube channel (2016 Workshop): "Jefferson Lab Hall-D" - * https://www.youtube.com/channel/UCjI87hRy7U60CdkGpMSk2Fw - * Offline data processing - Many calibrations automated (SWIF, still improving) - * Monitoring, reconstruction, & analysis: SWIF - * Software tests: Simulation, experiment, nightly build, etc. #### * Offline data processing - Many calibrations automated (SWIF, still improving) - * Monitoring, reconstruction, & analysis: SWIF - * Software tests: Simulation, experiment, nightly build, etc. #### * Analysis software - * Easy to use, best-practices analysis framework - * Built-in actions for common tasks: No re-inventing the wheel - * Mature: Library since 2012, 30+ active users #### * Offline data processing - * Many calibrations automated (SWIF, still improving) - * Monitoring, reconstruction, & analysis: SWIF - * Software tests: Simulation, experiment, nightly build, etc. #### * Analysis software - * Easy to use, best-practices analysis framework - * Built-in actions for common tasks: No re-inventing the wheel - * Mature: Library since 2012, 30+ active users #### * Collaboration - * 2013, 2016 Workshops: Software, physics, & analysis - Many early results shown at DNP - * First publication under collaboration review #### Reference Slides Jefferson Lab #### REST Production (ver01) - Planned for May 31th, started June 8th - Included number of plugins for performance studies (detector efficiency, track reconstruction) - Split the Data into 4 priority periods - Intermittent with periods waiting for detector calibration - Successfully completed July 10th, 21d net processing time - Failure rate after resubmissions: ~0.1% Slide courtesy Alex Austregesilo ### Multi-threaded Scaling: April - * Compartmentalized histogram locks - * At 24 threads, ~23x scaling: 450% improvement, within 5% of max ### Virtual Memory * Virtual memory: Max allowed is node-RAM / 0.7 Scaling: ~612 MB / thread #### Wall Time * At 24 threads, takes < 3 hrs At 1 thread, many jobs timeout!! ### Example Reconstructed Event * Tracks, calorimeter showers reconstructed, correlated #### Reconstructed Events Detector correlation: Tracks, calorimeter showers reconstructed * From online reconstruction, first few days of beam #### JANA - * JANA: Multithreaded, factory-based, plugin-driven - * Factory: Dedicated code for creating objects of that type - * User writes plugin to drive reconstruction/analysis - * Perl script generates template code E.g. Plugin for FCAL reconstruction (called every event)- Factory calls on right (**DFCALHit** from file) ``` #include <FCAL/DFCALShower.h> jerror_t JEventProcessor_example::evnt(JEventLoop* loop, int EventNum) { vector<const DFCALShower*> locFCALShowers; loop->Get(locFCALShowers); return NOERROR; } ``` # Analysis - Plugin DReaction: Reaction, analysis - DANA: Create particle combos - · DANA: Kinematic fit, make combos - DANA: Execute analysis actions - Plugin processor: Save results #### Thrown Particles Three DMCThrown factories: Default (all), tag="Decaying," tag="FinalState" DMCThrown "parentid" = parent "myid" DMCThrownMatching: - Thrown Reconstructed - Charged & neutral hypotheses: by 56 - FCAL & TOF: by & BCAL: by angle Other factories: - DReaction tag="Thrown" - DParticleCombo tag="Throw ROOT TTree Format ### Example Histogram Actions ## Kinematic Fitting (C++) - * Want to do strange-quark (Λ) physics - * Backgrounds, e.g. $\gamma p \rightarrow p \pi^+ \pi^-$ - * Hypothesis test: Fit the data - * Was this event the reaction I want? - * Constrain the data to match your reaction (minimize χ^2) - * Powerful: Apply many constraints simultaneously #### **A** Reconstruction - * Constraints: - * E & p conservation - * Production vertex, decay vertex - * Over-constrained: 6 DF - * Confidence level: Cut near zero - ★ Clean \(\text{peak (mass not constrained)}\) GLUE Very low background: Clean ∧ selection!! #### **A** Reconstruction - * Constraints: - * E & p conservation - * Production vertex, decay vertex - * Over-constrained: 6 DF - * Confidence level: Cut near zero - ★ Clean \(\Lambda \) peak (mass not constrained) Very low background: Clean ∧ selection!! Paul Mattione - GlueX Software Review - November 10, 2016 # Analysis Tracking * Coordinate collaboration efforts for understanding data #### Non-Strange Meson Channels [edit] | Channel | Topology(ies) | Measurement(s) | Analyzer(s) | Status | Analysis/Presentations/Documents | |---------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------|------------------------------------------| | πº | γρ→π ⁰ ρ, π ⁰ →γγ | Σ Asym., dσ/dθ, Effic.
Study | Sebastian Cole, George
Vasileiadis, Justin
Stevens, Igor
Strakovsky, David
Mack, Zhenyu Zhang | | Example plugin ਲੂ and Event Generator ਲੂ | | η | γρ→ηρ, η→γγ | Efficiency Study | Will McGinley,
Sebastian Cole,
Regina, David Mack,
Zhenyu Zhang | | Example plugin ₪ | | | γp→ηp, η→π ⁺ π ⁻ π ⁰ | Efficiency Study, Dalitz
Analysis | Will McGinley, Simon
Taylor, Regina | | Example plugin ஓ | | | γp→η ^(') p, η ^(') →e+e⁻γ | Efficiency Study, TFF | Cristiano Fanelli, MIT | | | | ης | γp→η _c p, η _c →K+K ⁻ π ⁰ | Effic. Studies | Maria Patsyuk | | | | ω | γρ→ωρ, ω→π+ππ0 | Σ Asym., dσ/dt, SDME,
Effic. Study, Dalitz
Analysis | Alex Barnes, Mike
Staib, Alex Somov,
Alyssa Henderson,
Sebastian Cole, Paul
Mattione | | Example plugin ਲੂ, Tutorial ਲੂ | | | $\gamma p \rightarrow \omega p, \omega \rightarrow \pi^0 \gamma$ | Σ Asym., dσ/dt, SDME,
Effic. Study | Mike Staib, Alex Somov | | Example plugin ₪ | | | $\gamma p \rightarrow \omega p, \ \omega \rightarrow \pi^0 \gamma, \ \omega \rightarrow \pi^+ \pi^- \pi^0$ | Calorimeter Effic. Study | Jon Zarling | | Example plugin _ਫ ਰ | | η' | γρ→η'ρ, η'→π⁺π'η | Bump Hunt | Regina, FIU | | Example plugin & | # FDC Hit Efficiencies (Alex A.) Pseudo hit = wire position + clusters in both cathodes (position along wire) • Requires matching position perpendicular to wire and timing # FDC Hit Efficiencies (Alex A.) Pseudo hit = wire position + clusters in both cathodes (position along wire) • Requires matching position perpendicular to wire and timing Jefferson Lab #### Detector/Reconstruction Studies #### * Beam: - * Beam Polarization (Talks by Justin & Mike D.) - * Beam Energy (Talk by Alex D.) - * Beam Flux (Talk by Justin) #### * Tracking - * CDC Hit Efficiency (Mike S.) - * FDC Hit Efficiency (Alex A.) - * Track Reconstruction (Talk by Simon) - * Track Resolution & Efficiency (Paul M.) #### * TOF/SC: - * TOF Efficiency (Beni) - * SC Efficiency (Mahmoud) #### Detector/Reconstruction Studies - * BCAL: - * Neutral Energy & Efficiency - * Hadronic Energy & Efficiency (Elton) - * Covariance Matrix (Mark D., testing soon) - * FCAL: - * Neutral Energy & Efficiency (Jon Z.) - * Hadronic Energy & Efficiency - * Covariance Matrix (Mark D., testing soon) - * Channel reconstruction, triggering, & acceptance: - * Triggering (Talk by Alex S.) - * Magnetic field comparison - * ρ (Alex A.), 4π (Alex A.), ω (Mike S.), ϕ (Alex B., see his talk) 2.0 #### Reconstructed Meson Peaks 0.0 0.4 8.0 2.0 1.2 1.6 $\gamma \pi^0$ Invariant Mass [GeV/ c^2] 0.0 0.4 8.0 $\pi^+\pi^-\pi^0$ Invariant Mass [GeV/ c^2] #### $\gamma p \rightarrow pK^+K^-$ * Use KinFit cut to ~remove ρ