

dE/dx PID Study

Abdennacer Hamdi

GlueX Collaboration Meeting

May 16, 2017

Introduction |

- Forward Drift Chambers: Cathode strip chambers, $\sigma_{\rm x,y}$ ~ 200, $\sigma(\delta p/p)$ ~ 1-5%
- Measure dE/dx for particle ID => identify recoiled protons.

Motivation

- Goal: Achieve the optimal separation of different particle types using dE/dx
 - > Estimate dE/dx mean value and eventually the width.
- Method: Truncated mean
 - Drop some hits with largest dE/dx values from the track
 - → Optimize truncation by:
 - 1st method: best resolution.
 - 2nd method: Strongest separation power
 - 3rd method: lowest mis-id

Procedure

- Spring 2016 data, runs: 011529_001 011529_010.
- All the tracks in the CDC
- Truncation dependence on P (0.4 0.8 GeV/c) & θ (20° 60°)

Momentum Vs θ

Procedure

• 1st Step: Select the protons.

Resolution

• 1st method: best resolution => optimal truncation.

Resolution

• 1st method: best resolution => optimal truncation.

Resolution

1st method: optimal truncation ~35%

Separation Power

• 2nd method: strongest separation power => optimal truncation.

Separation Power

2nd method: optimal truncation ~15%

3rd method: lowest mis-id => optimal truncation.

• 3rd method: optimal truncation ~25%

optimal truncation (based on mis-id)

Results & perspectives

- The dE/dx optimal truncations found are different from the currently used one (50%).
- The dE/dx optimal truncation is different for each classifier.

<u>Next</u>:

- Study the optimal truncation in exclusive channels:
 - Clean samples of different particles to improve separation power.
- Study the potential of a double truncated mean method.
- Study other possible calibration that might be needed (e.g.: entrance angle & space-charge effect).
- Determine dE/dx resolution for different momenta and particle types.

Thank you for your attention

Backup

2nd step: extract the expected dE/dx for protons

• dE/dx vs. θ

θ[deg]

Procedure

dE/dx dependance of truncation (different cuts)

Separation Power

• 2nd method: strongest separation power => optimal truncation.

Mis-id

• 3rd method: lowest mis-id => optimal truncation.

