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Abstract

This document derives some general properties of Dalitz plots. In particular, a derivation of the
relation between the density along a decay band and the cosine of the decay angles is presented. It is
also shown that given two identical particles, how the helicity angles of the two decay chains are related.

1 Introduction

In this note, we are going to examine the properties a scattering process where we have three particles in
the final state. We describe this in terms of a projectile particle, P , with mass mp, interacting with a target
particle, T , with mass mt. This ultimately goes to a final state with three particles, 1, 2 and 3, with masses
m1, m2 and m3, respectively.

P + T → 1 + 2 + 3

Throughout the discussion, we will consider that the reaction proceeds through an intermediate particle, A,
with mass ma, and that A decays to 1 and 2.

P + T → 1 + A → 1 + 2 + 3 (1)

In the next section, we describe that various coordinate systems used to describe the reactions. While
the reaction takes place in the “lab frame”, where the target is initially at rest (Section 2.1, we will find the
“center-of-mass frame” (Section 2.2) to be more useful. We will also look at the decay of A in the rest frame
of A. Here, we will find that there are three frames that are useful, all of which differ by the orientation of
the z axis (Section 2.3).

In Section 3, we look in detail at the Dalitz plot that can be formed from the invariant masses of pairs
of the final-state particles. The Dalitz plot is useful for understanding details of the production and decay
of the particle A.

2 Coordinate Systems and Kinematics

2.1 The Lab Frame

We consider the reaction in which a projectile particle of mass mp and initial momentum, ~Pp, interacts with
a stationary target particle of mass, mt. After the interaction, two particles emerge. One of mass ma and
momentum ~Pa, and the second of mass m1 and momentum ~P1. The particle of mass ma subsequently decays
into two daughter particles of masses m2 and m3, and momentum ~P2 and ~P3, respectively. This is shown in
Figure 1(a), and this coordinate system in known as the “lab frame”. In this frame, momentum conservation
tells us

~Pp = ~P1 + ~P2 + ~P3 .
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Figure 1: The coordinate

The energy of the particles are given in terms of their momentum and mass as

EpL =
√

(Ppc)2 + (mpc2)2 projectile

EtL = mtc
2 target

E1L =
√

(P1c)2 + (m1c2)2

EaL =
√

(Pac)2 + (mac2)2

E2L =
√

(P2c)2 + (m2c2)2

E3L =
√

(P3c)2 + (m3c2)2 .

Using these, energy conservation gives us

EpL + EtL = E1L + E2L + E3L .

In the lab frame, we have the Mandelstam variables, s and t, given as

s =
[
EpL + (mt c

2)
]2 − (Pp c)

2

t = [EpL − EaL]
2 −

(
~Pp − ~Pa

)
·
(
~Pp − ~Pa

)
c2

u = [EpL − E1L]
2 −

(
~Pp − ~P1

)
·
(
~Pp − ~P1

)
c2 .

2.2 The Center-of-mass Frame

It is also useful to consider the interaction in the center-of-mass frame, as shown in Figure 1(b). In this
frame, we use lower case ~pjs to denote the momentum, and Ej to denote the energy. In this frame, the
projectile and target particles moving towards each other with equal an opposite momentum

0 = ~pp + ~pt .

Particles A and 1 emerge from the interaction with equal and opposite momentum as well, but oriented in
space differently than the projectile and target.

0 = ~p1 + ~pa

We can account for this orientation by noting that particle A emerges at an angle θa relative to the direction
of the projectile particle, P , as shown. Particle A then decays into its two daughter particles, 2 and 3, with
momenta ~p2 and ~p3, respectively. The total energy in the center of mass frame, E, is equal to

√
s. The
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Lorentz-invariant s, t and u can be written in terms of the center-of-mass momentum and energy

s = [Ep + Et]
2

t = [Ep − Ea]
2 − (~pp − ~pa) · (~pp − ~pa) c2

u = [Ep − E1]
2 − (~pp − ~p1) · (~pp − ~p1) c2 .

With total energy E, and |~pa| = |~p1| ≡ pa, we can write

E =
√

(pac)2 + (mac2)2 +
√

(pac)2 + (m1c2)2 ,

which can be solved to yield

pa =

√
[E2 − (m1c2 +mac2)2] [E2 − (m1c2 −mac2)2]

2E
. (2)

In order to change reference frames, we need to perform a Lorentz boost along the direction of the
projectile. This transformation is given as the matrix multiplication(

Ei + Et
0

)
=

(
γ −βγ
−βγ γ

) (
EiL +mtc

2

Pi

)
.Mij (3)

Using the second (momentum) equation, we find

β =
Ppc

EpL +mtc2
. (4)

The relativistic factor, γ, can be expressed in terms of β as

γ =
1√

1− β2
.

So, we can write

γ =
EpL +mtc

2√
(mtc2)2 + 2mtc2EpL

, (5)

and the combination of βγ is

βγ =
Pp c√

(mtc2)2 + 2mtc2EpL
. (6)

In the center-of-mass frame, we choose the z axis to be along the direction of the projectile, ẑ = p̂p. With
this choice for the z-axis, there is one natural choice for the direction of the y-axis, normal to the reaction
plane, defined as

ŷ =
~pp × ~pa
|~pp × ~pa|

,

and the x axis is defined by

x̂ = ŷ × ẑ .

Figure 2(a) shows these choices on the reaction as seen in the center-of-mass frame. This choice is useful
when studying the primary interaction, as it keeps all the particles from this reaction in the same plane.

A second choice is to choose one of the coordinate axes normal to the plane that contains the three
final-state particles, 1, 2 and 3, and the other two axes in the plane. For this choice, we generally cannot
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choose the z-axis along the direction of the projectile. Thus, it is convenient to choose it along the direction
of particle A,

ẑ = p̂a ,

and the the y-axis is taken normal to the decay plane,

ŷ =
~p1 × ~p2
|~p1 × ~p2|

.

The x-axis is then chosen to yield a right-handed coordinate system, with x̂ given by

x̂ = ŷ × ẑ .

This choice is shown in Figure 2(b), and is useful when we are studying properties of the final-state particles.
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Figure 2: Coordinate systems in the center-of-mass frame. In (a), we have taken the z-axis along the
projectile direction, and the y-axis normal to the reaction plane, defined by ~pp × ~pa. In (b), we have taken
the z-axis along particle A, and the y-axis normal to the decay plane of the three final-state particles, defined
by ~p1 × ~p2.

In the frame with the z-axis along the projectile direction, the initial two particles have momenta given
as

~pp = pp ẑ

~pt = −pp ẑ .

The two secondaries have momentum given as

~pa = pa (sin θa x̂+ cos θa ẑ)

~p1 = −pa (sin θa x̂+ cos θa ẑ) .

The two daughters particles, from the decay of the particle A, are not required to be in the reaction place, so
we need to define a pair of polar angles to describe each of these. Thus, we have the momentum of particles
2 and 3 given by

~p2 = p2 (sin θ2 cosφ2 x̂+ sin θ2 sinφ2 ŷ + cos θ2 ẑ)

~p3 = p3 (sin θ3 cosφ3 x̂+ sin θ3 sinφ3 ŷ + + cos θ3 ẑ) .

In the choice with the z-axis along the direction of A, we have

~p1 = −paẑ
~p2 = p2 (cos θ2aẑ + sin θ2ax̂)

~p3 = p3 (cos θ3aẑ + sin θ3ax̂) .
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2.3 The Rest Frame of the Decaying Particle

The particle of mass ma subsequently decays into daughters of masses m2 and m3. It is also convient to
examine the system as viewed from the rest frame of the particle of mass ma. We start with the Lorentz
boost that goes from the overall center-of-mass frame to this frame. It is a boost along the direction of the
particle, and taking the lead from the previos section, we have that

β =
pac√

(pac)2 + (mac2)2

where pa is given by equation 2. Similarly,

γ =

√
(pac)2 + (mac2)2

mac2
,

and

βγ =
pac

mac2
.

There are three coordinate systems that are used to describe the decay of particle with mass ma. These
differ by the choice of the direction of the z axis. These are the “helicity frame”, the “Gottfried-Jackson
frame”, and the the “Adair frame”. For all three of these, the y axis is chosen normal to the reaction plane:

ŷ =
~pi × ~pa
|~pi × ~pa|

,

and the x axis is chosen according to

x̂ = ŷ × ẑ .

Figure 3 shows the z axis for the three coordinate systems.
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Figure 3: The z-axis for the helicity (zh), Adair (za) and the Gottfried-Jackson (zg) frames. Also shown are
the coordinate axes for the center-of-mass frame. The y axis is the same in all four frames, the x axis is
determined by x̂ = ŷ × ẑ.

2.3.1 Helicity Frame

For the helicity frame, the z axis is taken along the the direction of the particle of mass ma as seen in the
center-of-mass frame. This is also along the boost direction which moves from the center-of-mass frame to
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the rest frame of particle ma. Given the coice of the coordinate directions, we need to angles to describe the
momentum of the final-state particles, θh and φhel.

~p2 = pa (sin θh cosφhx̂+ sin θh sinφhŷ + cos θhẑ)

~p3 = −pa (sin θh cosφhx̂+ sin θh sinφhŷ + cos θhẑ) .

2.3.2 Adair Frame

In the Adair frame, the the z axis is chosen to be along the initial beam direction in the center-of-mass.

2.3.3 Gottfried-Jackson Frame

In the Gottfried-Jackson frame, the the z axis is chosen to be along the initial beam direction as seen in the
rest frame of the particle of mass ma.

3 Dalitz Plots

In the case where one of the daughters of particle a decays into a pair of daughters as well, for example

a → 1 + x → 1 + 2 + 3

we will often use a Dalitz plot to analyze the three-body decay. The Dalitz plot [2] is a convenient way
to view and analyze reactions in which there are three particles in the final state. If the three final-state
particles are identical, it is sometimes plotted in terms of the kinetic energy of the particles. In the case when
not all the particles are indexical, the Dalitz plot is made using the square of the invariant mass of pairs of
particles. We also make a change of notation at this point, and move to units in which c = 1. Thus, instead
of writing m1c

2 or pic, we will just write mi or pi. Thus, the relativistic energy relation will be written as

E2
i = p2i +m2

i .

Finally, while most of the quantities at which we look are Lorentz invariants, it is convenient to examine the
final state in the center-of-mass frame, where the total energy is E. We also often see the center of mass
system written as a particle of mass M , where M = E. In addition, when needed, we choose a system in
which one of the coordinate axes is normal to the plane containing the three particles.

3.1 Phase Space Distributions in Three-body Final States

We consider some process with center-of-mass energy E which has a final state with three particles, 1, 2 and
3, whose masses are m1, m2 and m3. Each of the three particles has momentum, ~pi, and energy Ei, where
the energy, momentum and mass are related by

E2
i = m2

i + ~pi · ~pi = m2
i + p2i .

For these three particles, we know that the distribution of momenta populates a two-dimensional phase
space, d2R3. Here, we want to determine the distribution in the 2–D phase space.

To do this, we start with the full 9-D phase space for a three-body final state, given as

d9R3 =
d3~p1
2E1

d3~p2
2E2

d3~p3
2E3

δ3 (~p1 + ~p2 + ~p3) δ (E1 + E2 + E3 − E) ,

where the delta functions impose momentum and energy conservation. The δ3 (
∑
~pi) forces the total mo-

mentum to be zero and the δ (
∑

[Ei]− E) constrains the total energy to be E. We can immediately integrate
over d3~p3, with the delta function imposing the constraint that ~p3 = − (~p1 + ~p2). This integral yields

d6R3 =
d3~p1
2E1

d3~p2
2E2

1

2E3
δ (E1 + E2 + E3 − E) . (7)
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In this expression, we can write E3 as

E2
3 = m2

3 + p23

E2
3 = m2

3 + (~p1 + ~p2) · (~p1 + ~p2)

E2
3 = m2

3 + p21 + p22 + 2p1p2 cos θ12 , (8)

where θ12 is the angle between ~p1 and ~p2. We can next integrate over the variable p2.To do this, we choose
the z-axis along the direction of ~p1. This allows us to write

d3~p2 = p22 dp2 d (cos θ12) dφ12 .

This can be integrated over dφ12 to yield a factor of 2π. We can also differentiate equation 8 for fixed values
of p1 and p2 to obtain

E3 dE3 = p1 p2 d (cos θ12) .

Combining these, we can write equation 7 as

d4R3 =
π

4

d3~p1
p1E1

p22dp2
p2E2

∫ E3max

E3min

dE3 δ (E1 + E2 + E3 − E) ,

where the limits of integration can be written as

E3min =
√
m2

3 + (p1 − p2)2

E3min =
√
m2

3 + (p1 + p2)2 .

The integral over the delta function yields 1, so we find

d4R3 =
π

4

d3~p1
p1E1

p22dp2
p2E2

. (9)

We now expand the d3~p1 as

d3~p1 = p21 dp1 d (cos θ1) dφ1 ,

and the angular integral can be carried out to yield 4π. This lets us write equation 9 as a 2-D phase space

d2R3 = π2 p1 dp1
E1

p2 dp2
E2

.

If we now note that Ei dEi = p1 dpi, we can write this expression as

d2R3 = π2 dE1 dE2 . (10)

The allowed region in the E1–E2 space is determined by the limits that

E3min ≤ E − E1 − E2 ≤ E3max .

We can define the smooth curve that bounds the allowed region as

F (E1, E2, E,m1,m2,m3) = 0 .

We can find this boundary by solving the equation

E − E1 − E2 =
√
m2

3 + (p1 ± p2)2 .
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Doing the messy algebra yields an expression for the function, F , as

F =
(
E2 +m2

1 +m2
2 −m2

3

)2 − 4m2
1m

2
2 − 8E

(
E2

1E2 + E1E
2
2

)
+4
(
E2 +m2

2

)
E2

1 + 4
(
E2 +m2

1

)
E2

2 + 4
(
3E2 +m2

1 +m2
2 −m2

3

)
E1E2

−4
(
E2 +m2

1 +m2
2 −m2

3

)
EE1 − 4

(
E2 +m2

1 +m2
2 −m2

3

)
EE2 (11)

Equation 10 tells us that if the three final-state particles follow a phase-space distribution, then a plot of E2

versus E1 will be uniformly populated. Since there is nothing special about particles 1 and 2, a plot of Ej
versus Ei will be uniformly populated. This can also be written in terms of the kinetic energy, Ti = Ei−mi,
which would also be uniformly populated.

3.2 The Dalitz Plot

Rather than expressing phase space in terms of energies, it is more typical to express things in terms of
invariant masses, m2

ij , where we can write the invariant mass of two of the three particles as

m2
ij = (Ei + Ej)

2 − (~pi + ~pj)
2

m2
ij = m2

i +m2
j + 2(EiEj − ~pi · ~pj)

m2
ij = m2

i +m2
j + 2(EiEj − pipj cos θij) . (12)

There is a global constraint relating the total energy, E, the three daughter masses and the three possible
invariant masses in the problem. This is given as

E2 = m2
12 +m2

13 +m2
23 −m2

1 −m2
2 −m2

3. (13)

Consider now the addition of m2
12 and m2

13, where we replace ~p3 = −~p1 − ~p2 and E3 = E − E1 − E2. It
is easily shown that

E1 =
E2 +m2

1 −m2
23

2E
(14)

E2 =
E2 +m2

2 −m2
13

2E
(15)

E3 =
E2 +m2

3 −m2
12

2E
. (16)

This confirms that the original statement on energy and invariant-mass squared being equivalent. We see
that

π2 dE1 dE2 =
π2

4E2
dm2

13 dm
2
23 ,

so the phase space can be written in terms of a pair of invariant masses as

d2R3 =
π2

4E2
dm2

ij dm
2
jk . (17)

A plot of the allowed phase space for the three-body final states in terms of a pair of squared invariant
masses is referred to as a Dalitz plot. We can transform the boundary F , as given by equation 11, to an
equivalent expression, G, expressed in terms of m2

ij . This gives us

G(E,m1,m2,m3,m
2
12,m

2
23) = m4

12m
2
23 +m2

12m
4
23 −m2

12m
2
23

(
E2 +m2

1 +m2
2 +m2

3

)
+m2

12

(
m2

3 −m2
2

) (
E2 −m2

1

)
+m2

23

(
m2

1 −m2
2

) (
E2 −m2

3

)
+
(
m2

2E
2 −m2

1m
2
3

) (
E2 −m2

1 +m2
2 −m2

3

)
. (18)
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As with the expression for F , setting G = 0, and then solving for the allowed values of m2
12 and m2

23 will
yield the boundary of the Dalitz plot. Such a plot will be bounded by minimum and maximum values of
m2
ij , given as

min
(
m2
ij

)
= (mi +mj)

2

max
(
m2
ij

)
= (E −mk)

2
.

For the minimum value of m2
ij , particles i and j are parallel, with the same velocity, while particle k is

moving opposite to these. For the maximum value of m2
ij , particle k is at rest, and i and j have equal and

opposite momenta. The boundary can be found by solving equation 18 for m2
12 in terms of m2

23, and then
varying m2

23 from (m2 + m3)2 to (E −m1)2 and finding the two allowed values for m2
12. We can write the

quadratic equation for m2
12 as

0 =
[
m2

23

] (
m2

12

)2
+
[(
m2

23

)2
+
(
m2

3 −m2
2

) (
E2 −m2

1

)
−m2

23

(
E2 +m2

1 +m2
2 +m2

3

)] (
m2

12

)
+
[
m2

23

(
m2

1 −m2
2

) (
E2 −m2

3

)
+
(
m2

2E
2 −m2

1m
2
3

) (
E2 −m2

1 +m2
2 −m2

3

)]
.

The Dalitz plot shows m2
ij plotted against m2

jk, as shown in Figure 4. We also note that the third

invariant mass, m2
ki, can also be read off this plot as well. It follows the diagonal dashed line in the figure,

with the maximum value of m2
ki on the left side and the minimum value of m2

ki on the right side of the plot.

m2
12

m2
23

(E-m3)2

(E-m1)2

(m1+m2)2

(m2+m3)2

1
2

2
3

1

2 3 2

1 3

3
1 2

1
3

m2
13=(m1+m3)2

m2
13=(E-m2)2

Figure 4: A Dalitz plot for a system with center-of-mass energy E going to a final state with three particles of
masses m1, m2 and m3. The allowed phase space is bounded by the curve in the figure. Along the boundary
of the figure, all three particles are collinear.

3.3 Distributions in the Dalitz Plot

Now let us consider a situation where our system of total energy E decays initially into to particles, one of
which is our particle of mass m1, and a second which has mass ma. The particle of mass ma will subsequently

9



decay into particles of masses m2 and m3, yielding our three-body final state. This is shown in Figure 5.

E

ma

pa

m1
p1

m2

m3

p2

p3

(a)

θ23

p1

p2

p3

(b)

θ2a

θ12

z

ma

m2

m3

(c)
θh2

β

A

q2

q3

Figure 5: (a) Shows a system at rest of total energy E that decays into a particle of mass ma and one of
mass m1. The particle of mass ma subsequently decays into a pair of daughter particles of masses m2 and
m3. (b) Shows the momentum of the three final-state particles in the initial frame. We choose the z-axis
along the direction of particle A, and particle 2 makes and angle of θ2a from z. Similarly, the angle from
1 to 2, θ12 is just π − θ2a. (c) Shows the particle of mass ma, in its rest frame, decaying into m2 and m3.
The particle of mass m2 makes an angle of θh2 with respect to the direction of the particle of mass ma (the
direction of the Lorentz boost to move from the initial frame to the rest frame of the decaying particle. This
frame is known as the helicity frame.

In the language of invariant masses, ma = m23, so we have a particle of mass m23 recoiling against
particle of mass m1. In our Dalitz plot (Figure 4), this would appear as a vertical band of fixed m2

23. We
would now like to examine the the distribution in m2

12 as we move along the vertical band in fixed m2
23 from

the minimum to to the maximum values of m2
12.

In the center-of-mass frame, the total energy is E, and we define a coordinate system whose z-axis is
along ~pa and whose y-axis is normal to the decay plane of the three particles. We then want to boost along
ẑ into the rest frame of m23, and look at the angle between particle 2 and the boost direction, β̂. We will
call this angle θh2 , as shown in Figure 5(c), and we are interested in the distribution in the cosine of this
angle, cos θh2 .

In this frame, we can write the momentum of particle 2 as

~p2 =

 p2 sin θ2a
0

p2 cos θ2a


where θ2a is the angle between ~p2 and ~pa, as shown in Figure 5(b). The Lorentz boost factor β into the rest
frame of m23 is given as

~β =
~pa
Ea

.

Noting that Ea = E − E1, and that ~p1 = −~pa, we can write

~β = − p1
E − E1

ẑ

γ =
E − E1

m23

βγ =
p1
m23
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This yields the energy, E h
2 , and momentum, ~ph2 , of particle 2 in the helicity frame as E h

2

ph2x
ph2z

 =

 γ 0 −βγ
0 1 0
−βγ 0 γ

  E2

p2 sin θ12
p2 cos θ12

 .

E h
2 = γE2 − βγp2 cos θ12

ph2x = p2 sin θ12 (19)

ph2z = γp2 cos θ12 − βγE2 . (20)

For a given m23, the magnitude of ~ph2 and the energy, E h
2 , can be obtained from two-body decay kinematics.

We have a particle of mass m23 decaying to a pair of daughters of masses m2 and m3, so we have

ph2 =

√
(m2

23 +m2
3 −m2

2)2

4m2
23

−m2
3

E h
2 =

√
(m2

23 −m2
3 +m2

2)2

4m2
23

We know that cos θ2, in the helicity frame, can be found from equation 19.

cos θh2 =
γp2 cos θ2a − βγE2

ph2

This can be simplified by inserting γ and βγ from above into the equation, and then using equation 12 to
replace write

p2 cos θ12 = −m
2
12 −m2

1 −m2
2 − 2E1E2

2p1
.

Since θ12 = π − θ2a, we have

p2 cos θ2a =
m2

12 −m2
1 −m2

2 − 2E1E2

2p1
.

After these substitutions, we obtain

cos θh2 =
1

ph2

[(
E − E1

m23

) (
m2

12 −m2
1 −m2

2 − 2E1E2

2p1

)
−
(
p1
m23

)
E2

]
.

Expanding this, and using E2
1 − p21 = m2

1, we get

cos θh2 =
E
(
m2

12 −m2
1 −m2

2

)
− 2EE1E2 − E1

(
m2

12 −m2
1 −m2

2

)
+ 2E2m

2
1

2p1m23 ph2

and then multiplying by 2E/2E, and using equations 14 and 15 and

cos θh2 =
1

4E p1m23 ph2

[
2E2

(
m2

12 −m2
1 −m2

2

)
−
(
E2 +m2

1 −m2
23

) (
E2 +m2

2 −m2
13

)
−

(
E2 +m2

1 −m2
23

) (
m2

12 −m2
1 −m2

2

)
+ 2

(
E2 +m2

2 −m2
13

)
m2

1

]
From equation 13, we have

E2 +mh
2 −m2

13 = m2
12 +m2

23 −m2
1 −m2

3 .
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cos θh2 =
1

4E p1m23 ph2

[
2E2

(
m2

12 −m2
1 −m2

2

)
−
(
E2 +m2

1 −m2
23

) (
m2

12 +m2
23 −m2

1 −m2
3

)
−

(
E2 +m2

1 −m2
23

) (
m2

12 −m2
1 −m2

2

)
+ 2

(
m2

12 +m2
23 −m2

1 −m2
3

)
m2

1

]

cos θh2 =

[
−2m2

23

]
m2

12 +
[
m2

23(m2
2 +m2

3 −m2
23) +m2

1(m2
2 −m2

3 +m2
23)− E2(m2

2 −m2
3 −m2

23)
]

4Eph2p1m23

Which for a fixed value of m2
23, p1, and ph2 implies that cos θh2 is a linear function of m2

12. We can now
substitute in for the values of p1 and ph2 which leads to the following.

cos θh2 =

[
−2m2

23

]
m2

12 +
[
m2

23(m2
2 +m2

3 −m2
23) +m2

1(m2
2 −m2

3 +m2
23)− E2(m2

2 −m2
3 −m2

23)
]√

[E4 + (m2
1 −m2

23)2 − 2E2(m2
1 +m2

23)] [m4
2 + (m2

23 −m2
3)2 − 2m2

2(m2
23 +m2

3)]

For a vertical band in m2
23 in Figure 4, cos θh2 would be +1 and the bottom of the band and −1 at the top

of the band.

4 The Helicity Formalism for Decays

4.1 The decay A → B C

First we consider a particle A of spin J and spin projection M along some arbitrary axis. In its rest frame,
A decays into two daughter particles B and C with spins s1, s2. The two particles have equal and opposite
momentum, p, and move along a direction n̂(θ, φ) with respect to the spin-quantization axis (z) of particle
A. The final state can then be described by (2s1 + 1) · (2s2 + 1) helicity states |pλ1λ2〉. The helicities of the

daughter particles, λi are defined as the projection of their total angular momentum , ~J = ~l = ~s, along the
direction of flight [4, 5] as measured in the rest frame of A.

λ = ~J · ~p
|~p|

= l · ~p
|~p|

+ms = ms (21)

Taking note of the fact that p is fixed, we can write that the amplitude for the decay, A can be expressed as;

A =< θ, φ, λ1, λ2 | U | JM > . (22)

The probability of a daughter emerging with polar angle (θ, φ) is given as | A |2, which means that if we can
calculate A, then we can determine the angular distribution.

The rotation operator, R(α, β, γ) is normally expressed in terms of the Euler angles, where the total
rotation can be expressed as the product of three individual rotations. The first is by and angle α around
the z axis, the second is by an angle β around the new y axis, and the third is by an angle γ around the
final z axis:

R(α, β, γ) = Rz(γ)Ry(β)Rz(α) = e−iγJze−iβJye−iαJz (23)

where we use the fact that a rotation about some axis n̂ is generated by the angular momentum operator
~J · n̂. The angular momentum eigenstates | jm > transform irreducibly under rotations because R and J2

commute. A representation is labeled by the total angular momentum, j, and the action of R(α, β, γ) on a
basis state, | jm > is:

R(α, β, γ) | jm >=

j∑
m′=−j

Dj
mm′(α, β, γ) | jm′ > (24)

12
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Figure 6: Coordinate system for the decay A→ BC

We can now multiply this by the bra-state < jm′′ |, and obtain:

< jm′′ | R(α, β, γ) | jm > =

j∑
m′=−j

Dj
mm′(α, β, γ) < jm′′ | jm′ > (25)

= Dj
m′′m′(α, β, γ) . (26)

If we define :
djm′m(β) =< jm′ | e−iβJy | jm >,

then
Dj
mm′(αβγ) = e−iαm

′
djm′m(β)e−iγm.

Using this information, we now want to evaluate the amplitude as given in equation 22. While the two
body helicity wave function, | θ, φ, λ1, λ2 > is not itself an eigenfunction of J2, we can express it in terms of
a sum over eigenstates of J2. Namely,

| θ, φ, λ1, λ2 > =
∑
J,M

√
2J + 1

4π
DJ
Mλ(φ, θ,−φ) | J,M, λ1λ2 > (27)

where λ = λ1 − λ2. Equation 22 can now be written as:

fλ1λ2M (θ, φ) = < θ, φ, λ1, λ2 | U | JM >

=
∑
J′M ′

< θ, φ, λ1, λ2 | Jf ,Mf , λ1, λ2 >< Jf ,Mf , λ1, λ2 | U | JM >

=

√
2J + 1

4π
DJ∗
Mλ(φ, θ,−φ)Tλ1λ2 .

It should be pointed out that there is often a degree of choice for the third rotation angle. Two common
choices are −φ, and 0. Under the second choice, one often sees the D-function written as DJ∗

Mλ(θ, φ). It is

13



worth mentioning that for reactions in which the final state particles have non-zero spin, the choice of the
third angle is no longer arbitrary, and care needs to be taken. Under the former choice of −φ for the third
angle, it is easy to rewrite f as:

fλ1λ2M (θ, φ) =

√
2J + 1

4π
DJ
λ,M (−φ,−θ, φ)Tλ1λ2

.

The interaction is rotation invariant. The transition amplitude is a matrix with (2s1+1)(2s2+1) rows and
(2J+1) columns. DJ∗

Mλ(φ, θ,−φ) describes the geometry (the rotation of the system Σ3 where the helicity
states are defined back into the CMS system of the resonance) Tλ1λ2

describes the dependences from the
spins and the orbital angular momenta of the different particles in the decay process. The general form of
Tλ1λ2 is given by

Tλ1λ2
=
∑
ls

αls 〈Jλ|ls0λ〉 〈sλ|s1s2λ1,−λ2〉 (28)

where αls are unknown fit parameters. They define the decay configuration concerning spin and orbital
angular momentum into one specific decay channel. The brackets are Clebsch-Gordan coefficients which
describe the couplings ~J = ~l + ~s und ~s = ~s1 + ~s2. It is summed over all l and s possible by angular
momentum, parity and C-parity conservation. Finally the angular distribution is obtained by calculating:

wD(θ, φ) = Tr(ρf ) = Tr(fρif
+) (29)

ρf is the final state density matrix of the dimension (2s1+1)(2s2+1) and ρi is the initial density matrix of
dimension (2J+1).

• Multiple decay chains

One of the advantages of the helicity formalism is that it can easily be extended to successive decays. This
is in principle possible for an arbitrary number of further two-body decays; of course the calculation of the
decay angular distribution gets more and more complex. Assume that not only A decays into B and C but
also B and C decay further into B1B2 and C1C2. The total helicity amplitude for a reaction A → BC,
B → B1B2, C → C1C2, has the following form:

ftot = [f(B)⊗ f(C)] f(A)

=
∑

λ(B)λ(C)

[
fλ(B1)λ(B2),λ(B) ⊗ fλ(C1)λ(C2),λ(C)

]
fλ(B)λ(C),λ(A)

⊗ represents the tensor product of two matrices. To calculate the angular distribution of a complicated decay
chain the transition amplitude for the different single decays fλ(x1)λ(x2),λ(x) of X → X1X2 are calculated
first. These are then combined. Fig. 7 shows in which cases this combination is done by a scalar or by a
tensor product.

All decays which are placed in the figure one besides another have to be combined by a tensor product
(all (J,mJ)A with all (J,mJ)B); all decays which happen in a line are combined by a scalar product. Here
the (J,mJ)A1, depends directly on (J,mJ)A. For Fig. 7 one gets:

ftot = [ ( f(A2)f(A1)f(A) )⊗ ( [ f(B2)⊗ f(B1) ] f(B) ) ] f(p̄N) (30)
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