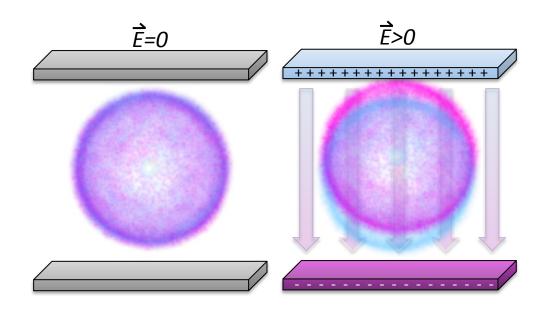
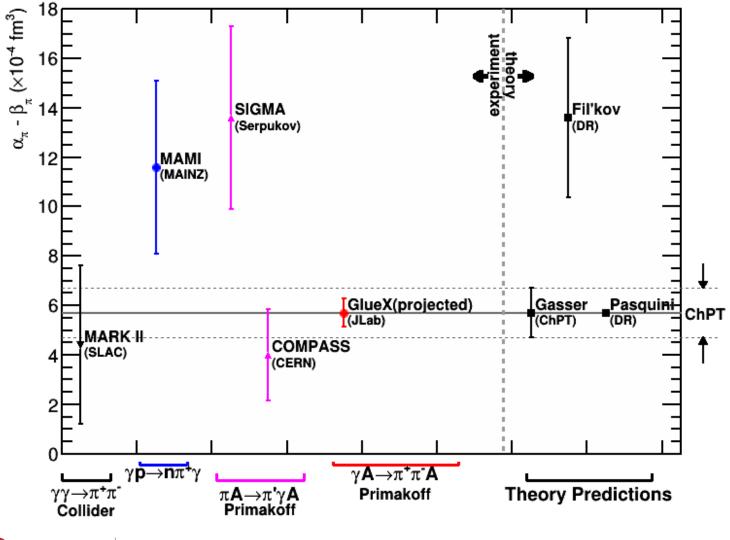
Detector Design Aided By Machine Learning

A case study of the Charged Pion Polarizability Experiment at Jefferson Lab

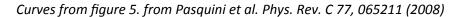
David Lawrence, JLab Robert Johnston, UMass Ilya Larin, UMass

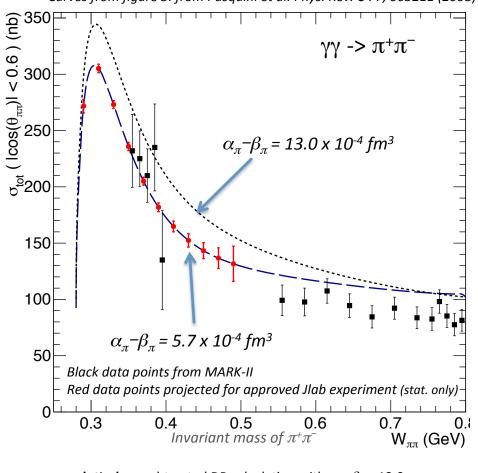


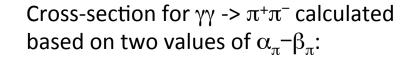
Oct. 25, 2017


Charged π Polarizability

- Polarizability: Ease in which an external field may induce a dipole moment in a particle
- Property which reflects nature of internal structure of particle

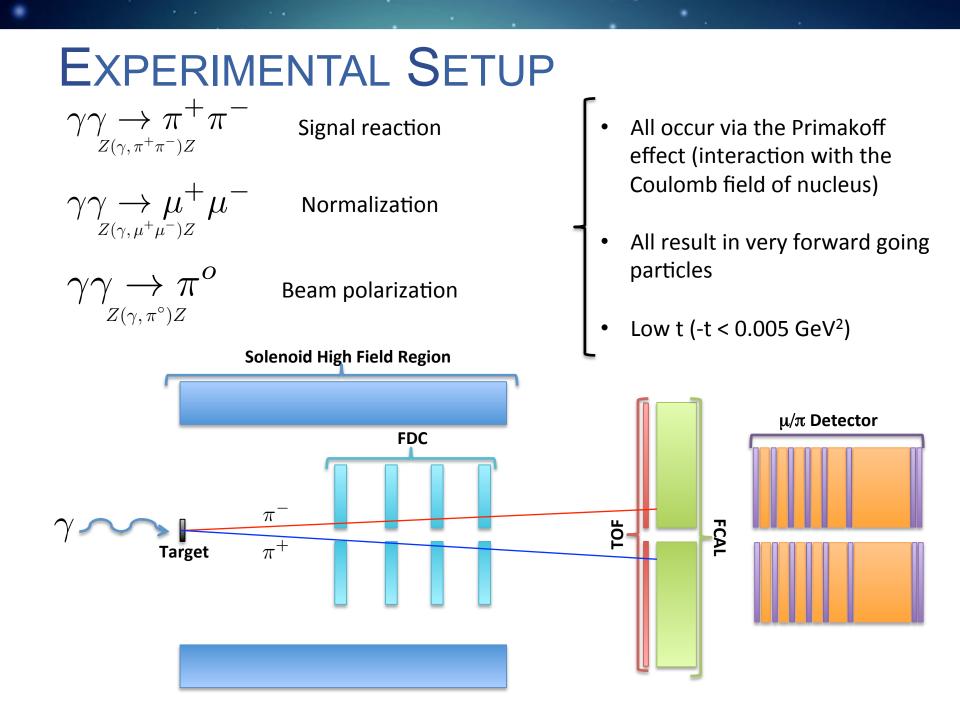



EXPERIMENTAL/THEORETICAL LANDSCAPE



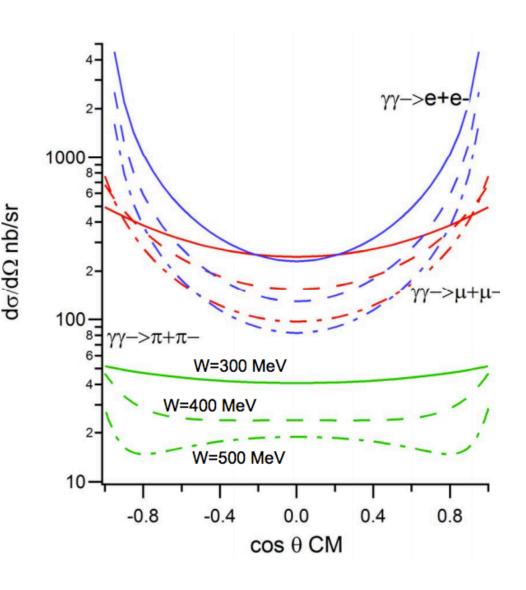
Relating cross-section to $\alpha_{\pi} - \beta_{\pi}$

dotted: subtracted DR calculation with $\alpha_{\pi} - \beta_{\pi} = 13.0$ **dashed**: subtracted DR calculation with $\alpha_{\pi} - \beta_{\pi} = 5.7$


 α_{π} – β_{π} = 13.0 x 10⁻⁴ fm³ (top, dotted line)

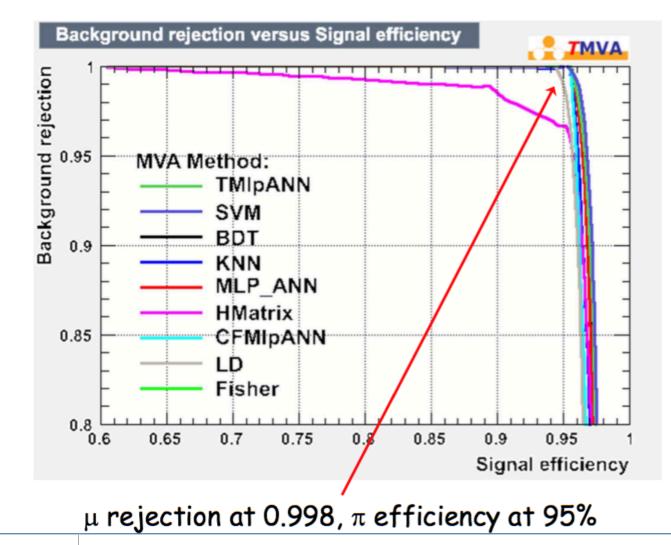
 $\alpha_{\pi}^{-}\beta_{\pi}$ = 5.7 x 10⁻⁴ fm³ (solid and dashed lines)

Cross-section varies by ~10% for factor of 2 variation in α_{π} - β_{π}


Need measurement of $\sigma(\gamma\gamma \rightarrow \pi^+\pi^-)$ at few percent level

THE PROBLEM

- $\mu+\mu$ (background) are produced ~10x more often than $\pi+\pi$ - (signal)
- To measure cross section to few percent means reducing a 10x bigger background to less than a few 1/10 of a percent
- GlueX detector has no way of distinguishing between μ+μ- and π+πevents at this level
- A new detector that works in tandem with GlueX is required



FIRST ATTEMPT FCAL μ/π detector (45cm Pb-glass) (MWPC + 20cm Iron blocks) $1.5\lambda_{I}$ λ. λ_{I} Simulate single 2GeV λı ulletparticles with simple μ^+ or π^+ geometry 4 nucl. Interaction lengths \rightarrow ~2% of π s make it through $\mathsf{E}_{\mathsf{FCAL}}$ N_1 N_2 N₄ N_3 factory->AddVariable("Nmwpc1", 'I'); 40 Tell TMVA what 41 factory->AddVariable("Nmwpc2", 'I'); input variables to 42 factory->AddVariable("Nmwpc3", 'I'); 43 factory->AddVariable("Nmwpc4", 'I'); use factory->AddVariable("Efcal := Sum\$(Edep)", 'F'); Tell TMVA what

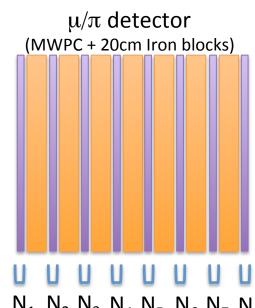
methods to use

64	factory->BookMethod(TMVA::Types::kMLP,	"MLP_ANN",	"H:!V");
65	factory->BookMethod(TMVA::Types::kFisher,	"Fisher",	"H:!V");
66	factory->BookMethod(TMVA::Types::kKNN,	"KNN",	"H:!V");
67	factory->BookMethod(TMVA::Types::kHMatrix,	"HMatrix",	"H:!V");
68	factory->BookMethod(TMVA::Types::kCFMlpANN,	"CFMlpANN",	"H:!V");
69	factory->BookMethod(TMVA::Types::kTMlpANN,	"TMlpANN",	"H:! <u>V</u> ");
70	factory->BookMethod(TMVA::Types::kSVM,	"SVM",	"H:!V");
71	factory->BookMethod(TMVA::Types::kLD,	"LD",	"H:!V");

Multi-Variate Analysis for 2 GeV π + and μ +

PHASE II

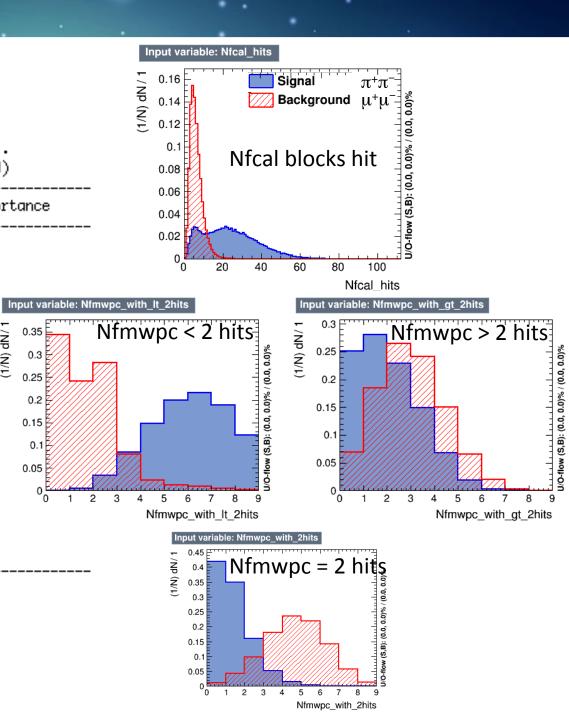
- $\pi^+\pi^-$ or $\mu^+\mu^-$ pairs with • realistic momentum distributions
- Addition of beam background
- Additional input variables



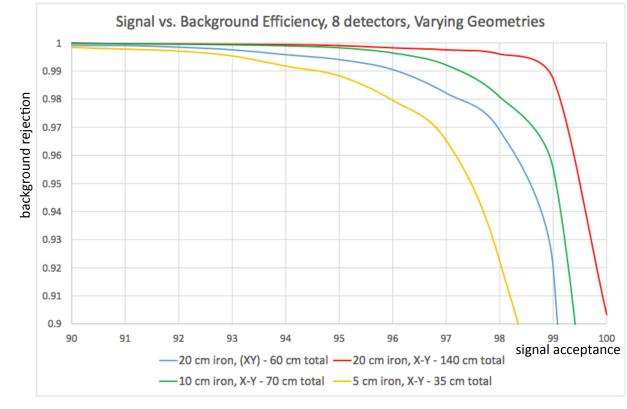
 μ^+ or π^+

 μ^- or π^-

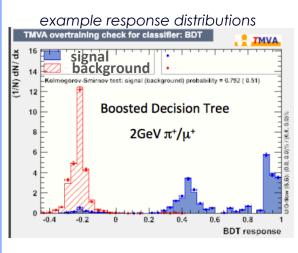
FCAL


(45cm Pb-glass)

 $N_1 N_2 N_3 N_4 N_5 N_6 N_7 N_8$


PHASE II

:	: Ranking input variables (method specific). : Ranking result (top variable is best ranked					
÷	Rank	:	Variable	:	Variable	Import
	2 4 5 6 7 8 9 10 11 12 13 14 15		Nfcal_hits Nfmwpc_with_lt_2hits Nfmwpc6 Nfmwpc8 Nfmwpc5 Ntof Nfcal_clusters Nfmwpc7 Nfcal_clusters Nfmwpc4 Efcal_clusters Nfmwpc2 Ntracks Nfmwpc3		9.746e-02 9.556e-02 7.841e-02 6.998e-02 6.997e-02 6.676e-02 5.887e-02 5.870e-02 5.715e-02 5.715e-02 5.478e-02 5.187e-02 4.410e-02 4.277e-02 4.084e-02 3.714e-02	E //Nb (N/T)
:	17	:	Nfmwpc_with_gt_2hits	:	3.429e-02	:

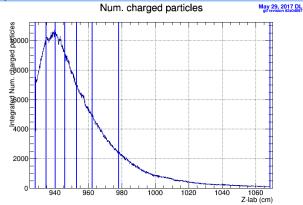

MORE IRON IS BETTER

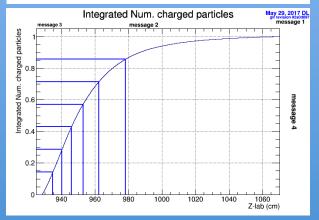
Question 1: Should we have 'xy-iron-xy-...', or 'x-iron-y-iron-x-iron-y- ... ?

Realistic simulation with both particles present and distribution of incident photon energies

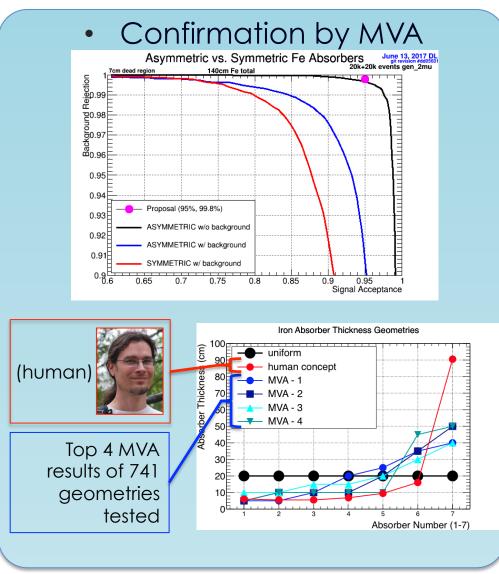
 An MVA can be biased by your choice of inputs, but not by your interpretation

Compare blue (xy-iron-xy...) and green (x-iron-y-iron...): Green is better. To do: adjust so total amount of iron is identical.

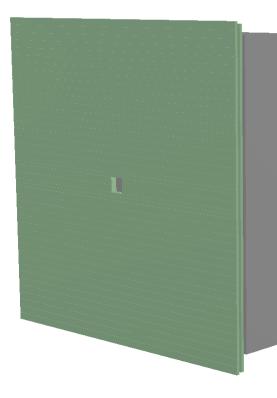

Study done by UMass undergrad. Bobby Johnston

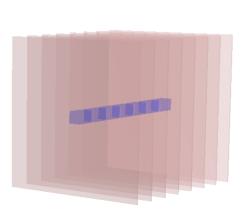


SYMMETRY OF IRON ABSORBER THICKNESS

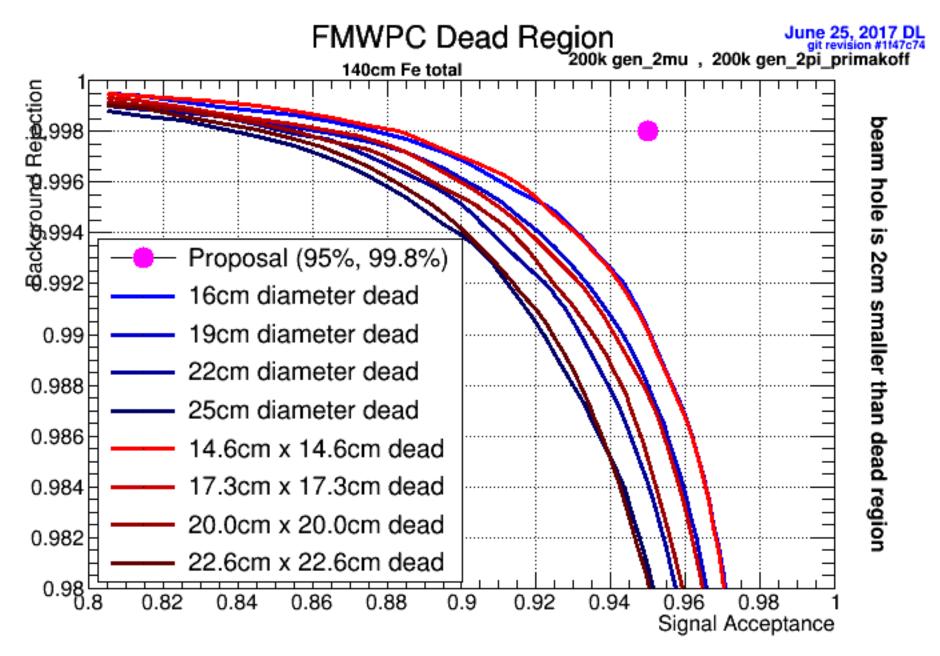

Human Derived Concept

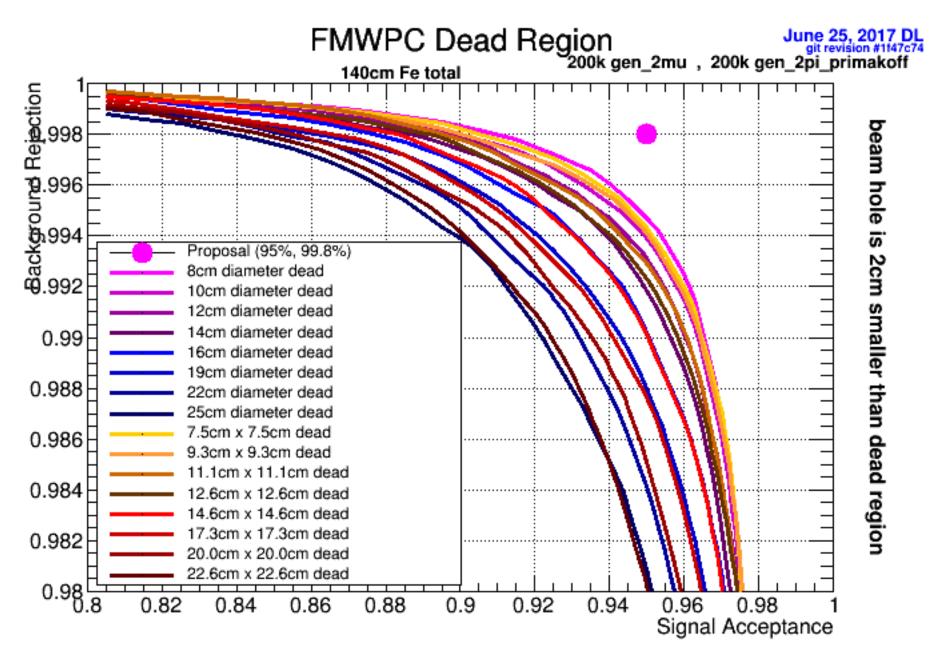
- Integrate number of particles as function of depth in Iron for π^{\pm} showers
- Split Iron so sections contain equal number of particles





Jefferson Lab


BEAM HOLE / DEAD REGION GEOMETRY



- Primary photon beam passes through square holes in center of FCAL and TOF detectors
- Natural geometry of beam is round
- Should hole in Iron absorbers be square to match FCAL or round to match beam? Does it matter?
- What size should it be?
- What about dead region in chambers?

AN MVA SURPRISE

- In 2013 we had a software tutorial for GlueX
 - $-\gamma p \rightarrow p \pi^+ \pi^+ \pi^-$
 - **Signal**: specialized generator with selected amplitudes
 - 5343 events
 - Background: pythia + selected reactions at low energy with uniform sampling in phase space
 - 8527 events

AN MVA SURPRISE

Original Exercise

:	Rank : Variable : Variable Importance
:	1:PV_r :1.129e-01
	2 : MissingNeutron_PT : 9.881e-02
:	3 : PiPlus1Timing_FOM : 7.881e-02
:	4 : PiMinusTiming_FOM : 7.325e-02
:	5 : UnusedMax_KPlus_FOM : 7.313e-02
:	6 : UnusedMax_Proton_FOM : 6.612e-02
:	7 : FOM_KinFit : 6.467e-02
:	8 : PiPlus2Timing_FOM : 6.264e-02
:	9 : PiPlus1NDF_Tracking : 5.885e-02
:	10 : PiPlus2NDF_Tracking : 5.744e-02
:	11 : PiPlus2DCdEdx_FOM : 5.722e-02
:	12 : UnusedMax_KMinus_FOM : 5.641e-02
:	13 : PiMinusNDF_Tracking : 5.075e-02
:	14 : PiMinusDCdEdx_FOM : 5.054e-02
:	15 : PiPlus1DCdEdx_FOM :3.848e-02
•	

Added extra variable "just for fun"

· :	Rank : Variable	: Variable Importance
:		: 9.909e-02
:	2 : Entry\$: 9.189e-02
:	3 : MissingNeutro	n_PT : 9.053e-02
:	4 : PiPlus1Timir	ng_FOM : 8.114e-02
:	5 : PiMinusTimi	ng_FOM : 7.219e-02
:	6 : Unused Max	_KPlus_FOM : 6.512e-02
:	7 : UnusedMax	_Proton_FOM : 6.133e-02
:	8 : PiPlus2NDF_	Tracking : 5.963e-02
:	9 : FOM_KinFit	: 5.823e-02
:	10 : PiPlus2Timi	ng_FOM : 5.629e-02
:	11 : PiPlus1NDF	_Tracking : 5.361e-02
:	12 : UnusedMax	_KMinus_FOM : 5.358e-02
		F_Tracking : 4.415e-02
:	14 : PiMinusDCo	lEdx_FOM : 4.318e-02
:	15 : PiPlus2DCd	Edx_FOM : 3.784e-02
:	16 : PiPlus1DCd	Edx_FOM : 3.221e-02
: -		

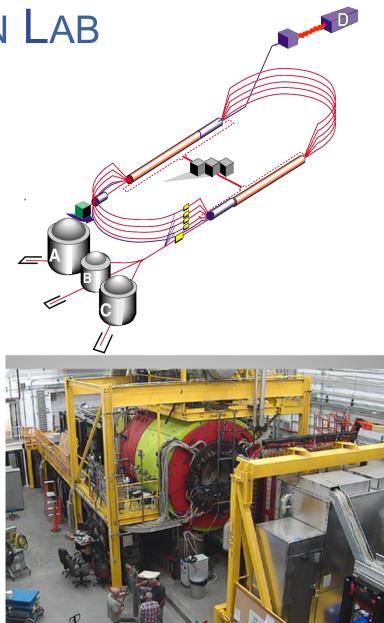
SOME ADVICE

- 1. Any variable could be useful. Just give it to the MVA and let it decide
- 2. Avoid variables that are strongly correlated with a quantity you're trying to measure (e.g. inv. mass of a resonance you're trying to search for)
- Make any obvious cuts before handing over to MVA so it doesn't have to waste discriminating power on the obvious

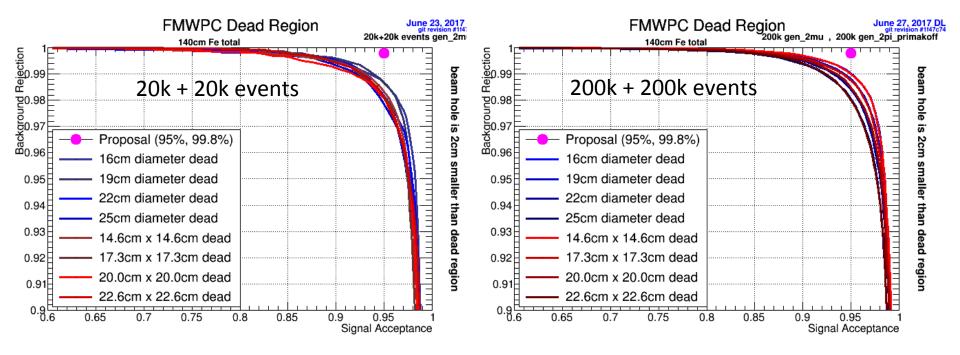
SUMMARY

- Using multiple MVA algorithms can allow quick insight into design decisions without much expertise in machine learning
 - The TMVA package in ROOT is a great way to get started with machine learning and gives easy access to several algorithms using a single input format and API
- MVA is a great way to make relative comparisons between different detector designs
- The Charged Pion Polarizability experiment at Jefferson Lab Hall-D has used TMVA to refine several of the π/μ detector design aspects

BACKUPS



HALL-D AT JEFFERSON LAB


- 12GeV CW(2-4ns) electron beam
- Only high energy photons enter Hall-D

20k -> 200k

