Monte Carlo @ Gluex: A Tutorial

Thomas Britton
GlueX Tutorial 2018
Overview

• Goal: produce a sample of $\omega \rightarrow \pi^+\pi^-\pi^0$ MC

• Tools:
 • Sim-recon (previously described in 1a)
 • MCwrapper (hd_utilities v1.14)

• Optional: OSG
 • certificate
MCwrapper seeks to be a one-stop-shop for simulation for GlueX/Hall-D. It needs to be able to:

- Complete the production chain; from generation through (hd_root) plugins
- Run both geant3 and geant4 easily
- Provide basic standards of simulation
- Be customizable for individual studies
- Utilize various batch systems
- Provide support for new users
MC Production Line

PreGenerated hddm

Generation

Geant

Smearing

hd_root

4-vectors

Detector response

Tuning

reconstruction

Output(s)
• Currently MCwrapper supports the following generators (and more)
 - Pre-made .hddm files
 - Genr8
 - Bggen
 - GenEtaRegge
 - gen_2pi_amp
 - gen_pi0
 - **gen_omega_3pi**
 - gen_2k
 - gen_2pi_primakoff
 - ...

6/20/18
• Utilizes RCDB calls and the supplied run number to fill out various parameters as desired such as:
 - Radiator thickness
 - Coherent Peak Position
 - Electron beam energy
 - etc

• This takes the leg work out of grabbing the right values for a given run number

• Note: the generator must be able to utilize these values in order for the wrapper to control them
Geant

• Supports both hdgeant and hdgeant 4
• Uses RCDB to fill out many of the settings (cards) for you
• Adds in or removes backgrounds
 - Random trigger
 - Beam Photon background
 - Custom file
MCsmear

• Takes the output of geant and smears it. Tries to make the pure MC look more like data that comes from the actual detector.

• MCwrapper will configure mcsmear to fold in the random trigger backgrounds if desired
hd_root

- Runs your favorite plugin(s) over the smeared hddm file
- This should leave you with root files and/or trees ready for merging and further analysis

ROOT
Data Analysis Framework
Obtaining MCwrapper

Assuming you completed session 1a...

it is already in your path!

Note: MCwrapper contains no compiled code. Thus it is ready to be used
MCwrapper Flow

It is advised to run outside of MCWRAPPER_CENTRAL

- MC.config
- Command line
- gluex_MC.py
 - Interpret options to configure MakeMC
 - Run MakeMC.(c)sh or submit to swif
- MakeMC.(c)sh
 - Take the options and produce
- Gcontrol.in
 - And needed files
 - And parameters
- Output directory
Command Line

- Usage: `gluex_MC.py config_file [Run_Number] [num_events] [all other options]`

 where `[all other options]` are:
 - `variation=%s` where `%s` is a valid `jana_calib_context` variation string (default is "mc")
 - `per_file=%i` where `%i` is the number of events you want per file/job (default is 10000)
 - `numthreads=%i` sets the number of threads to use to `%i`. Note: will overwrite `NCORES` set in `MC.config`
 - `base_file_number=%i` where `%i` is the starting number of the files/jobs (default is 0)
 - `generate=[0/1]` where 0 means that the generation step and any subsequent step will not run (default is 1)
 - `geant=[0/1]` where 0 means that the geant step and any subsequent step will not run (default is 1)
 - `mcsmear=[0/1]` where 0 means that the mcsmear step and any subsequent step will not run (default is 1)
 - `recon=[0/1]` where 0 means that the reconstruction step will not run (default is 1)
 - `cleangenerate=[0/1]` where 0 means that the generation step will not be cleaned up after use (default is 1)
 - `cleangeant=[0/1]` where 0 means that the geant step will not be cleaned up after use (default is 1)
 - `cleanmcsmear=[0/1]` where 0 means that the mcsmear step will not be cleaned up after use (default is 1)
 - `cleanrecon=[0/1]` where 0 means that the reconstruction step will not run (default is 1)
 - `batch=[0/1/2]` where 1/2 means that it will submit to the specified batch system (default is 0)
 - `logdir=[path]` will direct the .out and .err files to the specified path in qsub

Example:
`gluex_MC.py MC.config 11366 10000 cleanmcsmear=0 batch=1`
These two are optional if the standard running doesn't suit your needs
#custom_make_in-use this script instead
#custom_gcontrolلاعب: this gcontrol instead

Variation - no calibline=Linegoshire # set your java calib context here with or without calibline. Default is variation - no
GControl_CALIBLINE=Linegoshire

Running_Directory=/run/in/this/directory # where the code should run. This is default to ./. Use only when needed

ccSqlitePath=/your/sqlite/path/ccdb_sqlite # If you use SQLITE and it is not part of the environment file that gets sourced
rcSqlitePath=/your/sqlite/path/rcdb_sqlite # If you use SQLITE and it is not part of the environment file that gets sourced

Tag=my-custom-prefix-tag

DATA_OUTPUT_BASE_DIR=OUTPUT-LOCATION # your desired output location

NCORES=4 # Number of CPU threads to use or nodes: node-id:ppn or nodes:ppn depending on your system

GENERATOR=generator-to-use # or you may specify file: /.../file-to-use.hddm
GENERATOR_CONFIG=custom file for generator

common parameters for generators
beam_energy=32 # either use rcdb or do not set to pull the value for the chosen run number from the rcdb
radiator_thickness=5.0 # either use rcdb or do not set to pull the value for the chosen run number from the rcdb
oneecho=0 # either use rcdb or do not set to pull the value for the chosen run number from the rcdb
gen_min_energy=4
gen_max_energy=32

GEANT3_VERSION=9
BKG=none # [none, BeamPhotons, TagOnly, custom a g b g h d d m:1.8] Can be stacked eg Random+TagOnly:.123 where the .:[num] defines BGRATE

optional additional plugins that will be run along side damarest and rd root. This should be a comma separated list (e.g. plugIn1,plugIn2)
CUSTOM_PLUGINS= # or file: /.../file-to-use which is a configuration file for jana/rd_root

everything below for batch only
VERBOSE=True

BATCH_SYSTEM=svn # can be swf or condor or easy or gaus adding .:[name] will pass -- [name] into PBS.

environment file location
ENVIRONMENT_FILE=your-environment-files # change this to your own environment file

WORKFLOW_NAME=WORkFLOW-NAME # SWF WORKFLOW NAME
PROJECT = -glue # http://scicomp.jlab.org/scicomp/#/projects
TRACK = -simulation # https://scicomp.jlab.org/decs/d3atch_job_tracks

Resources for swf jobs
DISK=500 # Max Disk usage
RAM=50G # Max RAM Usage
TIMELIMIT=300minutes # Max walltime. This may be of the form xx:xx:xx depending on your system
OS=centos7 # Specify CentOS65 machines
Some of the Most Important Options

DATA_OUTPUT_BASE_DIR
- This is the full path to the root output directory. Mcwrapper will create the last directory if needed
 - `/work/halld2/home/[uname]/OUTPUT/`

GENERATOR_CONFIG
- Most generators contain hooks to make your life easier. Look in the corresponding folder in `$MCWRAPPER_CENTRAL/Generators`

BKG
- None
 - Removes backgrounds
- BeamPhotons
 - Add EM background comprised of a bunch of “beam photons”
- TagOnly
 - Same as above but only produces tagger accidentals
- Random
 - Data from the random trigger is fed into the MC at the hit level.
 - Requires `Random:[sim-recon-tag]`

CUSTOM_PLUGINS
- Either a comma separated list of plugin names or more powerfully file:`/....../jana_config.config` (a control file)
Generating MC at JLab

- Fill out some parts of the config file MCtutorial_SWIF.config (the [] entries)
 - DATA_OUTPUT_BASE_DIR (full path)
 - It will create the directory if needed
 - GENERATOR_CONFIG
 - The full path to and including gen_omega_3pi.cfg
 - BATCH_SYS
 - Use swif
 - WORKFLOW_NAME
 - Your choice
 - CUSTOM_PLUGINS
 - Use file://[full pth]/jana_config.config . The config file you made previously in session 1b
 - ENV_FILE
 - Use the environment file you made in session 1a

- gluex_MC.py MCtutorial_SWIF.config 30730 100000 batch=1

It is recommended to run a small interactive job (without batch=1) before submitting to any batch system
Open Science Grid

• The OSG is a cluster of clusters
 – Institutions can donate computational resources and in exchange use grid resources

• Jobs submitted to the grid get placed on an available node; somewhere...

• Need a grid certificate with a valid Virtual Organization (GlueX is a valid VO)
 – Getting_a_Grid_Certificate

• Need a submit node
 – scosg16 at jlab
Make some MC on the grid

• The OSG is essentially condor with some special configurations
 – It is already integrated with MCwrapper. Just be on a submit node (eg scosg16) with BATCH_SYS=OSG in your wrapper config file
 • Note: the output directory etc must be systems mounted on the submit node

• There is an example of an OSG configuration file in the session 2b tutorial folder
Output

DATA_OUTPUT_BASE_DIR/

- Configurations
 - Geant
 - Control.in (actually used)
 - Generation
 - Generator config file (actually used)

- Hddm
 - *.hddm

- Root
 - *.root

- Logs
 - Logs from batch

NOTE: If a job crashes for whatever reason on the OSG all files in the running directory will be returned to the main directory: DATA_OUTPUT_BASE_DIR
Other Helpful Tips

- Use the **TAG** option in the wrapper config file allows you to insert “non-canonical” text into file names
 - e.g. TAG=BGRate_2

- **Clean up folders** created during interactive jobs that failed
 - E.g. “11366_0”. Failure to do so can result in successive runs being unable transfer some output data

- Use the **cleanxxxxxx=0** options on the command line to save output
 - e.g. cleanmcsmear=0 will save the smeared hddm files

- Provide a **run range** to generate data in proportion to data taking
 - e.g. gluex_MC.py 11366-11555 100000000 ...
MCwrapper as a Framework

- MCwrapper provides a **framework** for MC production at GlueX, it, by itself, does not generate or simulate directly.

- Because MCwrapper contains no compiled code it can be **easily wrapped**. Just templatize the wrapper config and command line.
 - Find and replace is your friend!

Wrap **ALL THE THINGS**!
Conclusion

- MCwrapper is a light weight set of scripts to manage the production of your MC
 - Integrates submission to numerous batch systems including qsub and condor
 - Reduces human errors
 - Guarantees consistency and provides provenance
 - Customizable for a wide variety of use cases

- Now go forth and make some MC!
- For additional help or bug reports contact tbritton@jlab.org