Spring 2018 run summary

A. Deur Jefferson Lab

Spring 2018 run summary

A. Deur Jefferson Lab

Weekly (run coordinator's) summaries available at:

https://halldweb.jlab.org/wiki/index.php/Summary_Fall_2017_Spring2018_Run

Run plan: https://halldweb.jlab.org/wiki/index.php/Run_Coordination_Meetings:Fall2017_Spring2018_Run

- •Fall 17 and Spring 18 runs separated by 2 weeks. ⇒Treated as a single run period.
- •Operation: physics running. Energy: 11.62 GeV (Similar to Fall 16 and Spring 17)
 - •4-hall ops, mostly 5-pass for all Halls, some at high current. Challenge successfully meet by CEBAF: Great success

- •Fall 17 and Spring 18 runs separated by 2 weeks. ⇒Treated as a single run period.
- •Operation: physics running. Energy: 11.62 GeV (Similar to Fall 16 and Spring 17)
 - •4-hall ops, mostly 5-pass for all Halls, some at high current. Challenge successfully meet by CEBAF: Great success
- •Accelerator work related Hall D:
 - •Act. Col. fast raster commissioning;
 - •FFB commissioning, test nA BPm, test stripline BPM improvements for lower beam current ops.;
 - •Beam Energy Monitoring;
 - •Rapid-access system (Hall D. Collimator cave and Tagger area excluded).

- •Fall 17 and Spring 18 runs separated by 2 weeks. ⇒Treated as a single run period.
- •Operation: physics running. Energy: 11.62 GeV (Similar to Fall 16 and Spring 17)
 - •4-hall ops, mostly 5-pass for all Halls, some at high current. Challenge successfully meet by CEBAF: Great success
- Accelerator work related Hall D:
 - •Act. Col. fast raster commissioning;
 - •FFB commissioning, test nA BPm, test stripline BPM improvements for lower beam current ops.;
 - •Beam Energy Monitoring;
 - •Rapid-access system (Hall D. Collimator cave and Tagger area excluded).

•Hall D configuration:

- •Solenoid at 1350A. Rep. rate 250 MHz (As for Spr. 17. Fall 16 was 500 MHz). Slit shared with A (it was with B in Fall)
- •Beam current 1 nA-1.5 μA. 150 nA for standard production on 58 μm diamond;
- •Main diamond: 58 μm J70-100 (+new: 47 μm J70-105 & 17 μm JD70-104);
- •5mm collimator hole (except for TAC runs and possible thin diamond test runs);
- •Slow locks;
- Tagger quadrupole on (negative polarity);
- •LH2 target.

- •Fall 17 and Spring 18 runs separated by 2 weeks. ⇒Treated as a single run period.
- •Operation: physics running. Energy: 11.62 GeV (Similar to Fall 16 and Spring 17)
 - •4-hall ops, mostly 5-pass for all Halls, some at high current. Challenge successfully meet by CEBAF: Great success
- •Accelerator work related Hall D:
 - •Act. Col. fast raster commissioning;
 - •FFB commissioning, test nA BPm, test stripline BPM improvements for lower beam current ops.;
 - •Beam Energy Monitoring;
 - •Rapid-access system (Hall D. Collimator cave and Tagger area excluded).

•Hall D configuration:

- •Solenoid at 1350A. Rep. rate 250 MHz (As for Spr. 17. Fall 16 was 500 MHz). Slit shared with A (it was with B in Fall)
- •Beam current 1 nA-1.5 μA. 150 nA for standard production on 58 μm diamond;
- •Main diamond: 58 μm J70-100 (+new: 47 μm J70-105 & 17 μm JD70-104);
- •5mm collimator hole (except for TAC runs and possible thin diamond test runs);
- •Slow locks;
- Tagger quadrupole on (negative polarity);
- •LH2 target.

No high current limitation

- •Fall 17 and Spring 18 runs separated by 2 weeks. ⇒Treated as a single run period.
- •Operation: physics running. Energy: 11.62 GeV (Similar to Fall 16 and Spring 17)
 - •4-hall ops, mostly 5-pass for all Halls, some at high current. Challenge successfully meet by CEBAF: Great success

Accelerator work related Hall D:

- •Act. Col. fast raster commissioning;
- •FFB commissioning, test nA BPm, test stripline BPM improvements for lower beam current ops.;
- •Beam Energy Monitoring;
- •Rapid-access system (Hall D. Collimator cave and Tagger area excluded).

•Hall D configuration:

- •Solenoid at 1350A. Rep. rate 250 MHz (As for Spr. 17. Fall 16 was 500 MHz). Slit shared with A (it was with B in Fall)
- •Beam current 1 nA-1.5 μA. 150 nA for standard production on 58 μm diamond;
- •Main diamond: 58 μm J70-100 (+new: 47 μm J70-105 & 17 μm JD70-104);
- •5mm collimator hole (except for TAC runs and possible thin diamond test runs);
- •Slow locks;
- Tagger quadrupole on (negative polarity);
- •LH2 target.

Hall D goals:

- •Gather GlueX production data with its necessary systematic data;
- •High intensity DAQ/L1 tests;
- •Low intensity GlueX production runs;
- •TAC V-wire radiator commissioning. TAC test;
- •17 µm JD70-104 diamond alignment and performance check;
- •Detector tests: CDC and FDC HV scans, ToF CAEN TDC non-linearity study;
- •(Muon chamber, TRD, PrimEx's PbWO CompCal prototype. Trigger config. for future programs. Mostly Non-invasive tests).

Schedule and organization

Actual Timeline: Fall: 3 days + Spring: 13 weeks (original timeline: 2 weeks in Fall + 10 weeks in Spring)

- Nov. 27th-Dec. 3rd: Electron beam restoration/run other halls (5-pass separator trip problems: IoT arcing)
- Dec. 18th-Dec. 21st: Hall D Fall run (3 days): Commissioning/tests. No significant data taking. Hall A was down (target issue) ⇒ 3-hall operation for CEBAF.
- Dec. 21st-Jan. 5th: Xmas break.
- Jan. 5th-Jan. 10th: Electron beam restoration.
- Jan. 10th-May. 6th: Hall D Spring run: 13 weeks (+3 weeks CEBAF repairs). Focus: production.

Schedule and organization

Actual Timeline: Fall: 3 days + Spring: 13 weeks (original timeline: 2 weeks in Fall + 10 weeks in Spring)

- Nov. 27th-Dec. 3rd: Electron beam restoration/run other halls (5-pass separator trip problems: IoT arcing)
- Dec. 18th-Dec. 21st: Hall D Fall run (3 days): Commissioning/tests. No significant data taking. Hall A was down (target issue) ⇒ 3-hall operation for CEBAF.
- Dec. 21st-Jan. 5th: Xmas break.
- Jan. 5th-Jan. 10th: Electron beam restoration.
- Jan. 10th-May. 6th: Hall D Spring run: 13 weeks (+3 weeks CEBAF repairs). Focus: production.

Run responsibilities:

Leadership: C. Meyer/M. Shepherd, E. Chudakov/E. Smith

Run Coordinators:

Nov. 27th-Dec. 1st, 5 days: A. Deur (accelerator restoration)

Dec. 1st-Dec. 21st, 20 days: A. Deur

Xmas break.

Jan. 5th-Jan. 11th, 7 days: A. Deur (accelerator restoration)

Jan. 12th-Jan. 24th, 12 days: A. Deur

Jan. 24th-Jan. 31st, 7 days: A. Ostrovidov

Jan. 31st-Feb. 7th, 7 days: J. Stevens

Feb. 7th-Feb. 14th, 7 days: M. Dalton

Feb. 14th-Feb. 21st, 7 days: A. Barnes

Feb. 21st-Feb. 28th, 7 days: Z. Papandreou

Feb. 28th-March 5th, 6 days: C. Fanelli

March 5th-March 28th, Accelerator down (tranformer replacement).

R. Jones (1 week) and A. Deur (2 weeks) RCs.

March 28th-Apr. 4th, 7 days: N. Jarvis

Apr. 4th-Apr. 11th, 7 days: D. lawrence

Apr. 11th-Apr. 18th, 7 days: C. Gleason

Apr. 18th-Apr. 25th, 7 days: M. Dalton

Apr. 25th-May. 2nd, 7 days: S. Fegan

May. 2nd-May. 6th, 4 days: A. Austregesilo

Physics Division Liaison: Benedikt Zihlmann.

Analysis Coordinator: Alexander Austregesilo.

Run coordination, subsystem status, data quality monitoring, offline analysis are discussed at daily RC meetings (Usually 8:45am, counting house).

Spring 18 runplan

- 1. Verify electron beam quality and establish photon beam.
- 2. DAQ, L1 trigger, detectors and beamline checkouts.
- 3. Check 58 µm diamond (JD70-100) alignment.
- 4. Beam envelope measurement with fast raster.
- 5. Gluex data production:
 - Goal gather at least twice the amount of trigger taken in Spring 2017.
 - Harp scans (once every day).
 - Empty target run every 2 weeks. (Done at standard production current.)
 - Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
 - TAC runs. 2 TAC runs (one at beginning, one in middle of the run) + TAC syst. tests + V-wire test.
 - Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of 0°/90°/45°/135° data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator.
 - Switch polarization every run.
 - Start production with 58 µm diamond (JD70-100).
 - Align 17 μm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring
- 6. Straight track data
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

Spring 18 runplan

- 1. Verify electron beam quality and establish photon beam.
- 2. DAQ, L1 trigger, detectors and beamline checkouts.
- 3. Check 58 µm diamond (JD70-100) alignment.
- 4. Beam envelope measurement with fast raster.

5. Gluex data production:

- Goal gather at least twice the amount of trigger taken in Spring 2017.
- Harp scans (once every day).
- Empty target run every 2 weeks. (Done at standard production current.)
- Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
- TAC runs. 2 TAC runs (one at beginning, one in middle of the run) + TAC syst. tests + V-wire test.
- Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of 0°/90°/45°/135° data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator.
 - Switch polarization every run.
 - Start production with 58 µm diamond (JD70-100).
 - Align 17 μm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring
- 6. Straight track data
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

Spring 18 runplan

- 1. Verify electron beam quality and establish photon beam.
- 2. DAQ, L1 trigger, detectors and beamline checkouts.
- 3. Check 58 µm diamond (JD70-100) alignment.
- 4. Beam envelope measurement with fast raster.
- 5. Gluex data production:
 - Goal gather at least twice the amount of trigger taken in Spring 2017.
 - Harp scans (once every day).
 - Empty target run every 2 weeks. (Done at standard production current.)
 - Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
 - TAC runs. 2 TAC runs (one at beginning, one in middle of the run) + TAC syst. tests + V-wire test.
 - Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of 0°/90°/45°/135° data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator.
 - Switch polarization every run.
 - Start production with 58 µm diamond (JD70-100).
 - Align 17 μm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring
- 6. Straight track data
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

- 1. Verify electron beam quality and establish photon beam. ✓ Very quickly established. Started ahead of schedule.

 Beam good for production:
- 2. DAQ, L1 trigger, detectors and beamline checkouts. •Transmission same as Spring 2017 (~2.7 kHz PS coinc. scales
- •Transmission independent of diamond orientation
 3. Check 58 µm diamond (JD70-100) alignment.
 •Polarization same as Spring 2017 (~37%)
 - Typically a few nA of bleedthrough.
- 4. Beam envelope measurement with fast raster.

5. Gluex data production:

- Goal gather at least twice the amount of trigger taken in Spring 2017.
- Harp scans (once every day).
- Empty target run every 2 weeks. (Done at standard production current.)
- Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
- TAC runs. 2 TAC runs (one at beginning, one in middle of the run) + TAC syst. tests + V-wire test.
- Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of 0°/90°/45°/135° data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator.
 - Switch polarization every run.
 - Start production with 58 μm diamond (JD70-100).
 - Align 17 μm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring
- 6. Straight track data
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

A. Deur. GlueX collaboration meeting. 06/21/2018

- 1. Verify electron beam quality and establish photon beam. Very quickly established. Beam good for production
- 2. DAQ, L1 trigger, detectors and beamline checkouts. ✓ High rate tests done too: run at 65 kHz with 96% livetime.
- 3. Check 58 µm diamond (JD70-100) alignment.
- 4. Beam envelope measurement with fast raster.
- 5. Gluex data production:
 - Goal gather at least twice the amount of trigger taken in Spring 2017.
 - Harp scans (once every day).
 - Empty target run every 2 weeks. (Done at standard production current.)
 - Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
 - TAC runs. 2 TAC runs (one at beginning, one in middle of the run) + TAC syst. tests + V-wire test.
 - Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of 0°/90°/45°/135° data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator.
 - Switch polarization every run.
 - Start production with 58 μm diamond (JD70-100).
 - Align 17 μm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring
- 6. Straight track data
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

- 1. Verify electron beam quality and establish photon beam. Very quickly established. Beam good for production
- 2. DAQ, L1 trigger, detectors and beamline checkouts. ✓ High rate tests done too: run at 65 kHz with 96% livetime.
- 3. Check 58 µm diamond (JD70-100) alignment. ✓ Polarization same as Spring 2017 (~37%)
- 4. Beam envelope measurement with fast raster.
- 5. Gluex data production:
 - Goal gather at least twice the amount of trigger taken in Spring 2017.
 - Harp scans (once every day).
 - Empty target run every 2 weeks. (Done at standard production current.)
 - Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
 - TAC runs. 2 TAC runs (one at beginning, one in middle of the run) + TAC syst. tests + V-wire test.
 - Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of 0°/90°/45°/135° data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator.
 - Switch polarization every run.
 - Start production with 58 μm diamond (JD70-100).
 - Align 17 μm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring
- 6. Straight track data
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

- 1. Verify electron beam quality and establish photon beam. Very quickly established. Beam good for production
- 2. DAQ, L1 trigger, detectors and beamline checkouts. High rate tests done too: run at 65 kHz with 96% livetime.
- 3. Check 58 µm diamond (JD70-100) alignment. ✓ Polarization same as spring 2017 (~37%)
- 4. Beam envelope measurement with fast raster. ✓ Several tests done. Enough for assessment of the method validity. If validated, then more tests will be needed.

5. Gluex data production:

- Goal gather at least twice the amount of trigger taken in Spring 2017.
- Harp scans (once every day).
- Empty target run every 2 weeks. (Done at standard production current.)
- Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
- TAC runs. 2 TAC runs (one at beginning, one in middle of the run) + TAC syst. tests + V-wire test.
- Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of 0°/90°/45°/135° data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator.
 - Switch polarization every run.
 - Start production with 58 μm diamond (JD70-100).
 - Align 17 μm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring
- 6. Straight track data
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

- 1. Verify electron beam quality and establish photon beam. Very quickly established. Beam good for production
- 2. DAQ, L1 trigger, detectors and beamline checkouts. ✓ High rate tests done too: run at 65 kHz with 96% livetime.
- 3. Check 58 µm diamond (JD70-100) alignment. ✓ Polarization same as spring 2017 (~37%)
- 4. Beam envelope measurement with fast raster. ✓ Several tests done. Enough for assessment of the method validity. If validated, then more tests will be needed.
- 5. Gluex data production:
 - Goal gather at least twice the amount of trigger taken in Spring 2017. Exceeded goal thanks to run extension. 150B triggers.
 - Harp scans (once every day).
 - Empty target run every 2 weeks. (Done at standard production current.)
 - Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
 - TAC runs. 2 TAC runs (one at beginning, one in middle of the run) + TAC syst. tests + V-wire test.
 - Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of 0°/90°/45°/135° data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator.
 - Switch polarization every run.
 - Start production with 58 μm diamond (JD70-100).
 - Align 17 μm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring
- 6. Straight track data
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

- 1. Verify electron beam quality and establish photon beam. Very quickly established. Beam good for production
- 2. DAQ, L1 trigger, detectors and beamline checkouts. ✓ High rate tests done too: run at 65 kHz with 96% livetime.
- 3. Check 58 µm diamond (JD70-100) alignment. ✓ Polarization same as spring 2017 (~37%)
- 4. Beam envelope measurement with fast raster. ✓ Several tests done. Enough for assessment of the method.
- 5. Gluex data production:
 - Goal gather at least twice the amount of trigger taken in Spring 2017. ✓ Exceeded goal. 150B triggers.
 - Harp scans (once every day). ✓ Critical to make sure beam transmission and polarization remain optimal.
 - Empty target run every 2 weeks. (Done at standard production current.)
 - Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
 - TAC runs. 2 TAC runs (one at beginning, one in middle of the run) + TAC syst. tests + V-wire test.
 - Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of $0^{\circ}/90^{\circ}/45^{\circ}/135^{\circ}$ data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator.
 - Switch polarization every run.
 - Start production with 58 µm diamond (JD70-100).
 - Align 17 µm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring
- 6. Straight track data
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

- 1. Verify electron beam quality and establish photon beam. Very quickly established. Beam good for production
- 2. DAQ, L1 trigger, detectors and beamline checkouts. ✓ High rate tests done too: run at 65 kHz with 96% livetime.
- 3. Check 58 µm diamond (JD70-100) alignment. ✓ Polarization same as spring 2017 (~37%)
- 4. Beam envelope measurement with fast raster. ✓ Several tests done. Enough for assessment of the method.
- 5. Gluex data production:
 - Goal gather at least twice the amount of trigger taken in Spring 2017. Exceeded goal. 150B triggers.
 - Harp scans (once every day). ✓ Critical to make sure beam transmission and polarization remain optimal.
 - Empty target run every 2 weeks. (Done at standard production current.)
 - Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
 - TAC runs. 2 TAC runs (one at beginning, one in middle of the run) + TAC syst. tests + V-wire test.
 - Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of $0^{\circ}/90^{\circ}/45^{\circ}/135^{\circ}$ data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator.
 - Switch polarization every run.
 - Start production with 58 µm diamond (JD70-100).
 - Align 17 µm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring
- 6. Straight track data
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

- 1. Verify electron beam quality and establish photon beam. Very quickly established. Beam good for production
- 2. DAQ, L1 trigger, detectors and beamline checkouts. High rate tests done too: run at 65 kHz with 96% livetime.
- 3. Check 58 µm diamond (JD70-100) alignment. ✓ Polarization same as spring 2017 (~37%)
- 4. Beam envelope measurement with fast raster. ✓ Several tests done. Enough for assessment of the method.
- 5. Gluex data production:
 - Goal gather at least twice the amount of trigger taken in Spring 2017. ✓ Exceeded goal. 150B triggers.
 - Harp scans (once every day). ✓ Critical to make sure beam transmission and polarization remain optimal.
 - Empty target run every 2 weeks. (Done at standard production current.)
 - Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
 - TAC runs. 2 TAC runs (one at beginning, one in middle of the run) 4 TAC syst. tests 4 V-wire test.
 - Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of $0^{\circ}/90^{\circ}/45^{\circ}/135^{\circ}$ data + shorter Al. run per cy used for TAC runs (30 nA). number of triggers with Al. radiator.
 - Switch polarization every run.
 - Start production with 58 µm diamond (JD70-100).
 - Align 17 µm diamond and do 1-2 days of production runs (3.4 m half and end of the run.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring
- 6. Straight track data
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

V-wire tested successfully and

Low current tests successful.

Effect of in-beam material checked (target fill/empty runs).

TAC runs done at the start, second

A. Deur. GlueX collaboration meeting. 06/21/2018

- 1. Verify electron beam quality and establish photon beam. Very quickly established. Beam good for production
- 2. DAQ, L1 trigger, detectors and beamline checkouts. ✓ High rate tests done too: run at 65 kHz with 96% livetime.
- 3. Check 58 µm diamond (JD70-100) alignment. ✓ Polarization same as spring 2017 (~37%)
- 4. Beam envelope measurement with fast raster. ✓ Several tests done. Enough for assessment of the method.
- 5. Gluex data production:
 - Goal gather at least twice the amount of trigger taken in Spring 2017. Exceeded goal. 150B triggers.
 - Harp scans (once every day). ✓ Critical to make sure beam transmission and polarization remain optimal.
 - Empty target run every 2 weeks. (Done at standard production current.)
 - Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
 - TAC runs. 2 TAC runs (one at beginning, one in middle of the run) 4 TAC syst. tests 4 V-wire test.
 - Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of $0^{\circ}/90^{\circ}/45^{\circ}/135^{\circ}$ data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator. ✓ 0°: 22% / 90°: 22% / 45°: 21% / 135°: 22.% / Al.: 8%
 - Switch polarization every run.
 - Start production with 58 µm diamond (JD70-100).
 - Align 17 µm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring
- 6. Straight track data
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

- 1. Verify electron beam quality and establish photon beam. Very quickly established. Beam good for production
- 2. DAQ, L1 trigger, detectors and beamline checkouts. ✓ High rate tests done too: run at 65 kHz with 96% livetime.
- 3. Check 58 µm diamond (JD70-100) alignment. ✓ Polarization same as spring 2017 (~37%)
- 4. Beam envelope measurement with fast raster. ✓ Several tests done. Enough for assessment of the method.
- 5. Gluex data production:
 - Goal gather at least twice the amount of trigger taken in Spring 2017. ✓ Exceeded goal. 150B triggers.
 - Harp scans (once every day). ✓ Critical to make sure beam transmission and polarization remain optimal.
 - Empty target run every 2 weeks. (Done at standard production current.)

 - Raw mode run every week. (Done during target fill/empty, or during Harp Scans)

 TAC runs. 2 TAC runs (one at beginning, one in middle of the run) + TAC syst. tests + V-wire test.
 - Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of 0°/90°/45°/135° data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator.
 - Switch polarization every run. ✓ Switch polarization every run.
 Start production with 58 μm diamond (JD70-100).
 Mearly all production data taken on JD70-100

 - Align 17 µm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring
- 6. Straight track data
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

- 1. Verify electron beam quality and establish photon beam. Very quickly established. Beam good for production
- 2. DAQ, L1 trigger, detectors and beamline checkouts. ✓ High rate tests done too: run at 65 kHz with 96% livetime.
- 3. Check 58 µm diamond (JD70-100) alignment.
- 4. Beam envelope measurement with fast raster. ✓ Several tests done. Enough for assessment of the method.
- 5. Gluex data production:
 - Goal gather at least twice the amount of trigger taken in Spring 2017. ✓ Exceeded goal. 150B triggers.
 - Harp scans (once every day). ✓ Critical to make sure beam transmission and polarization remain optimal.
 - Empty target run every 2 weeks. (Done at standard production current.)
 - Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
 - TAC runs. 2 TAC runs (one at beginning, one in middle of the run) + TAC syst. tests + V-wire test.
 - Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of $0^{\circ}/90^{\circ}/45^{\circ}/135^{\circ}$ data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator.
 - Switch polarization every run. ✓
 - Start production with 58 µm diamond (JD70-100).
 - Align 17 µm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lum Yields similar polarization as 58 µm diamond
 - TPol monitoring
- 6. Straight track data
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

A. Deur. GlueX collaboration meeting. 06/21/2018

- 1. Verify electron beam quality and establish photon beam. Very quickly established. Beam good for production
- 2. DAQ, L1 trigger, detectors and beamline checkouts. ✓ High rate tests done too: run at 65 kHz with 96% livetime.
- 3. Check 58 µm diamond (JD70-100) alignment.
- 4. Beam envelope measurement with fast raster. ✓ Several tests done. Enough for assessment of the method.
- 5. Gluex data production:
 - Goal gather at least twice the amount of trigger taken in Spring 2017. ✓ Exceeded goal. 150B triggers.
 - Harp scans (once every day). ✓ Critical to make sure beam transmission and polarization remain optimal.
 - Empty target run every 2 weeks. (Done at standard production current.)
 - Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
 - TAC runs. 2 TAC runs (one at beginning, one in middle of the run) + TAC syst. tests + V-wire test.
 - Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of 0°/90°/45°/135° data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator.
 - Switch polarization every run. ✓
 - Start production with 58 µm diamond (JD70-100).
 - Align 17 µm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring

Several luminosity scans to study yield luminosity-dependence

- 6. Straight track data
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

- 1. Verify electron beam quality and establish photon beam. Very quickly established. Beam good for production
- 2. DAQ, L1 trigger, detectors and beamline checkouts. ✓ High rate tests done too: run at 65 kHz with 96% livetime.
- 3. Check 58 µm diamond (JD70-100) alignment.
- 4. Beam envelope measurement with fast raster. ✓ Several tests done. Enough for assessment of the method.
- 5. Gluex data production:
 - Goal gather at least twice the amount of trigger taken in Spring 2017. ✓ Exceeded goal. 150B triggers.
 - Harp scans (once every day). ✓ Critical to make sure beam transmission and polarization remain optimal.
 - Empty target run every 2 weeks. (Done at standard production current.)
 - Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
 - TAC runs. 2 TAC runs (one at beginning, one in middle of the run) + TAC syst. tests + V-wire test.
 - Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of 0°/90°/45°/135° data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator.
 - Switch polarization every run. ✓
 - Start production with 58 µm diamond (JD70-100).
 - Align 17 µm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring Also, TPol study with thick 750µm Be converter. Then alternated thin/thick converter each 0°/90°/45°/135° run quartet.
- 6. Straight track data
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

- 1. Verify electron beam quality and establish photon beam. Very quickly established. Beam good for production
- 2. DAQ, L1 trigger, detectors and beamline checkouts. ✓ High rate tests done too: run at 65 kHz with 96% livetime.
- 3. Check 58 µm diamond (JD70-100) alignment.
- 4. Beam envelope measurement with fast raster. ✓ Several tests done. Enough for assessment of the method.
- 5. Gluex data production:
 - Goal gather at least twice the amount of trigger taken in Spring 2017. ✓ Exceeded goal. 150B triggers.
 - Harp scans (once every day). ✓ Critical to make sure beam transmission and polarization remain optimal.
 - Empty target run every 2 weeks. (Done at standard production current.)
 - Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
 - TAC runs. 2 TAC runs (one at beginning, one in middle of the run) 4 TAC syst. tests 4 V-wire test.
 - Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of 0°/90°/45°/135° data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator.
 - Switch polarization every run. ✓
 - Start production with 58 µm diamond (JD70-100).
 - Align 17 μm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring ✓ Also, TPol study with thick 750µm converter, then alternate thin/thick converter each 0°/90°/45°/135° run set.
- 6. Straight track data ✓ Done during 1st solenoid magnet ramp-down.
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access.

- 1. Verify electron beam quality and establish photon beam. Very quickly established. Beam good for production
- 2. DAQ, L1 trigger, detectors and beamline checkouts. ✓ High rate tests done too: run at 65 kHz with 96% livetime.
- 3. Check 58 µm diamond (JD70-100) alignment.
- 4. Beam envelope measurement with fast raster. ✓ Several tests done. Enough for assessment of the method.
- 5. Gluex data production:
 - Goal gather at least twice the amount of trigger taken in Spring 2017. ✓ Exceeded goal. 150B triggers.
 - Harp scans (once every day). ✓ Critical to make sure beam transmission and polarization remain optimal.
 - Empty target run every 2 weeks. (Done at standard production current.)
 - Raw mode run every week. (Done during target fill/empty, or during Harp Scans)
 - TAC runs. 2 TAC runs (one at beginning, one in middle of the run) 4 TAC syst. tests 4 V-wire test.
 - Physics production with diamond(s) and 5 mm collimator.
 - Balanced amount of $0^{\circ}/90^{\circ}/45^{\circ}/135^{\circ}$ data + shorter Al. run per cycle: gather 10-15% of total number of triggers with Al. radiator.
 - Switch polarization every run. ✓
 - Start production with 58 µm diamond (JD70-100).
 - Align 17 μm diamond and do 1-2 days of production runs (3.4 mm coll.) to assess its quality.
 - Luminosity: Same as Spring 17: ~45 kHz, 150nA on 58 μm diamond + low lumi. runs for syst. studies
 - TPol monitoring ✓ Also, TPol study with thick 750µm converter, then alternate thin/thick converter each 0°/90°/45°/135° run set.
- 6. Straight track data ✓ Done during 1st solenoid magnet ramp-down.
- 7. Parasitic: Muon chamber/TRD/CompCal/Trigger config. for future programs. Take data for Hall D fast access. Fall data were enough. Fast access enabled during Spring run.

•	Solenoid magnet ramped down twice due to PXI comm. loss. Time losses were mitigated (straight track data taken, thin diamond alignment done, chance coincidence with RF studies).
	A. Deur. GlueX collaboration meeting. 06/21/2018

- Solenoid magnet ramped down twice due to PXI comm. loss. Time losses were mitigated (straight track data taken, thin diamond alignment done, chance coincidence with RF studies).
- Timing shifts (4 ns, 32 ns and 100 ns).
 - Workaround 100 ns shifts implemented (they compromise the data).
 - Workaround 32 ns shifts implemented (they do not compromise the data). Still happen occasionally.
 - 4 ns problem will not be fixed at the raw data level. Data not compromised but they complicate calibration.

- Solenoid magnet ramped down twice due to PXI comm. loss. Time losses were mitigated (straight track data taken, thin diamond alignment done, chance coincidence with RF studies).
- Timing shifts (4 ns, 32 ns and 100 ns).
 - Workaround 100 ns shifts implemented (they compromise the data).
 - Workaround 32 ns shifts implemented (they do not compromise the data). Still happen occasionally.
 - 4 ns problem will not be fixed at the raw data level. Data not compromised but they complicate calibration.
- DAQ slow starts of run and other issues.

- Solenoid magnet ramped down twice due to PXI comm. loss. Time losses were mitigated (straight track data taken, thin diamond alignment done, chance coincidence with RF studies).
- Timing shifts (4 ns, 32 ns and 100 ns).
 - Workaround 100 ns shifts implemented (they compromise the data).
 - Workaround 32 ns shifts implemented (they do not compromise the data). Still happen occasionally.
 - 4 ns problem will not be fixed at the raw data level. Data not compromised but they complicate calibration.
- DAQ slow starts of run and other issues.
- CDC mass flow controller failure. Not diagnosed during run (no sign of MFC misbehavior ⇒ misdiagnosed as a leak). Lower CDC tracking and dEdx PID efficiencies.

A. Deur. GlueX collaboration meeting. 06/21/2018

- Solenoid magnet ramped down twice due to PXI comm. loss. Time losses were mitigated (straight track data taken, thin diamond alignment done, chance coincidence with RF studies).
- Timing shifts (4 ns, 32 ns and 100 ns).
 - Workaround 100 ns shifts implemented (they compromise the data).
 - Workaround 32 ns shifts implemented (they do not compromise the data). Still happen occasionally.
 - 4 ns problem will not be fixed at the raw data level. Data not compromised but they complicate calibration.
- DAQ slow starts of run and other issues.
- CDC mass flow controller failure. Not diagnosed during run (no sign of MFC misbehavior ⇒ misdiagnosed as a leak). Lower CDC tracking and dEdx PID efficiencies.
- TPol noisy and initially unable to produce polarimetry. Noise issue ~fixed. No timely polarimetry for beam quality assessment.

- Solenoid magnet ramped down twice due to PXI comm. loss. Time losses were mitigated (straight track data taken, thin diamond alignment done, chance coincidence with RF studies).
- Timing shifts (4 ns, 32 ns and 100 ns).
 - Workaround 100 ns shifts implemented (they compromise the data).
 - Workaround 32 ns shifts implemented (they do not compromise the data). Still happen occasionally.
 - 4 ns problem will not be fixed at the raw data level. Data not compromised but they complicate calibration.
- DAQ slow starts of run and other issues.
- CDC mass flow controller failure. Not diagnosed during run (no sign of MFC misbehavior ⇒ misdiagnosed as a leak). Lower CDC tracking and dEdx PID efficiencies.
- TPol noisy and initially unable to produce polarimetry. Noise issue ~fixed. No timely polarimetry for beam quality assessment.
- Active Collimator voltage adapter failures/loose cable issues. No enough spares to fix some Out channels. No alarm indicating A.C. failures. Lead to beam mis-steering and time loss.

- Solenoid magnet ramped down twice due to PXI comm. loss. Time losses were mitigated (straight track data taken, thin diamond alignment done, chance coincidence with RF studies).
- Timing shifts (4 ns, 32 ns and 100 ns).
 - Workaround 100 ns shifts implemented (they compromise the data).
 - Workaround 32 ns shifts implemented (they do not compromise the data). Still happen occasionally.
 - 4 ns problem will not be fixed at the raw data level. Data not compromised but they complicate calibration.
- DAQ slow starts of run and other issues.
- CDC mass flow controller failure. Not diagnosed during run (no sign of MFC misbehavior ⇒ misdiagnosed as a leak). Lower CDC tracking and dEdx PID efficiencies.
- TPol noisy and initially unable to produce polarimetry. Noise issue ~fixed. No timely polarimetry for beam quality assessment.
- Active Collimator voltage adapter failures/loose cable issues. No enough spares to fix some Out channels. No alarm indicating A.C. failures. Lead to beam mis-steering and time loss.
- Backgrounds in profiler, CDC and FDC. Identified *via* absorption tests as Synchrotron radiation, but source not clearly identified. 100 µm W shield plate installed in collimator cave.

- Solenoid magnet ramped down twice due to PXI comm. loss. Time losses were mitigated (straight track data taken, thin diamond alignment done, chance coincidence with RF studies).
- Timing shifts (4 ns, 32 ns and 100 ns).
 - Workaround 100 ns shifts implemented (they compromise the data).
 - Workaround 32 ns shifts implemented (they do not compromise the data). Still happen occasionally.
 - 4 ns problem will not be fixed at the raw data level. Data not compromised but they complicate calibration.
- DAQ slow starts of run and other issues.
- CDC mass flow controller failure. Not diagnosed during run (no sign of MFC misbehavior ⇒ misdiagnosed as a leak). Lower CDC tracking and dEdx PID efficiencies.
- TPol noisy and initially unable to produce polarimetry. Noise issue ~fixed. No timely polarimetry for beam quality assessment.
- Active Collimator voltage adapter failures/loose cable issues. No enough spares to fix some Out channels. No alarm indicating A.C. failure lead to beam mis-steering and time loss.
- Backgrounds in profiler, CDC and FDC. Identified *via* absorption tests as Synchrotron radiation, but source not clearly identified. 100 μm W shield plate installed in collimator cave.
- Visible (expected) degradation of 58 μm diamond. Successfully realigned on new spot for last 5 weeks of the run.

- Solenoid magnet ramped down twice due to PXI comm. loss. Time losses were mitigated (straight track data taken, thin diamond alignment done, chance coincidence with RF studies).
- Timing shifts (4 ns, 32 ns and 100 ns).
 - Workaround 100 ns shifts implemented (they compromise the data).
 - Workaround 32 ns shifts implemented (they do not compromise the data). Still happen occasionally.
 - 4 ns problem will not be fixed at the raw data level. Data not compromised but they complicate calibration.
- DAQ slow starts of run and other issues.
- CDC mass flow controller failure. Not diagnosed during run (no sign of MFC misbehavior ⇒ misdiagnosed as a leak). Lower CDC tracking and dEdx PID efficiencies.
- TPol noisy and initially unable to produce polarimetry. Noise issue ~fixed. No timely polarimetry for beam quality assessment.
- Active Collimator voltage adapter failures/loose cable issues. No enough spares to fix some Out channels. No alarm indicating A.C. failure lead to beam mis-steering and time loss.
- Backgrounds in profiler, CDC and FDC. Identified *via* absorption tests as Synchrotron radiation, but source not clearly identified. 100 μm W shield plate installed in collimator cave.
- Visible (expected) degradation of 58 µm diamond. Successfully realigned on new spot for last 5 weeks of the run.
- Unstable beam convergence. Demanding periodic optic optimization.
- No fast and reliable diagnostic available yet to assess beam convergence at main collimator.

- Solenoid magnet ramped down twice due to PXI comm. loss. Time losses were mitigated (straight track data taken, thin diamond alignment done, chance coincidence with RF studies).
- Timing shifts (4 ns, 32 ns and 100 ns).
 - Workaround 100 ns shifts implemented (they compromise the data).
 - Workaround 32 ns shifts implemented (they do not compromise the data). Still happen occasionally.
 - 4 ns problem will not be fixed at the raw data level. Data not compromised but they complicate calibration.
- DAQ slow starts of run and other issues.
- CDC mass flow controller failure. Not diagnosed during run (no sign of MFC misbehavior ⇒ misdiagnosed as a leak). Lower CDC tracking and dEdx PID efficiencies.
- TPol noisy and initially unable to produce polarimetry. Noise issue ~fixed. No timely polarimetry for beam quality assessment.
- Active Collimator voltage adapter failures/loose cable issues. No enough spares to fix some Out channels. No alarm indicating A.C. failure lead to beam mis-steering and time loss.
- Backgrounds in profiler, CDC and FDC. Identified *via* absorption tests as Synchrotron radiation, but source not clearly identified. 100 µm W shield plate installed in collimator cave.
- Visible (expected) degradation of 58 µm diamond. Successfully realigned on new spot for last 5 weeks of the run.
- Unstable beam convergence. Demanding periodic optic optimization.
- No fast and reliable diagnostic available yet to assess beam convergence at main collimator.
- 5th-pass separator reliability: IOT problem and vacuum leaks caused significant Hall D downtime.

- Solenoid magnet ramped down twice due to PXI comm. loss. Time losses were mitigated (straight track data taken, thin diamond alignment done, chance coincidence with RF studies).
- Timing shifts (4 ns, 32 ns and 100 ns).
 - Workaround 100 ns shifts implemented (they compromise the data).
 - Workaround 32 ns shifts implemented (they do not compromise the data). Still happen occasionally.
 - 4 ns problem will not be fixed at the raw data level. Data not compromised but they complicate calibration.
- DAQ slow starts of run and other issues.
- CDC mass flow controller failure. Not diagnosed during run (no sign of MFC misbehavior ⇒ misdiagnosed as a leak). Lower CDC tracking and dEdx PID efficiencies.
- TPol noisy and initially unable to produce polarimetry. Noise issue ~fixed. No timely polarimetry for beam quality assessment.
- Active Collimator voltage adapter failures/loose cable issues. No enough spares to fix some Out channels. No alarm indicating A.C. failure lead to beam mis-steering and time loss.
- Backgrounds in profiler, CDC and FDC. Identified *via* absorption tests as Synchrotron radiation, but source not clearly identified. 100 µm W shield plate installed in collimator cave.
- Visible (expected) degradation of 58 µm diamond. Successfully realigned on new spot for last 5 weeks of the run.
- Unstable beam convergence. Demanding periodic optic optimization.
- No fast and reliable diagnostic available yet to assess beam convergence at main collimator.
- 5th-pass separator reliability: IOT problem and vacuum leaks caused significant Hall D downtime.

- Solenoid magnet ramped down twice due to PXI comm. loss. Time losses were mitigated (straight track data taken, thin diamond alignment done, chance coincidence with RF studies).
- Timing shifts (4 ns, 32 ns and 100 ns).
 - Workaround 100 ns shifts implemented (they compromise the data).
 - Workaround 32 ns shifts implemented (they do not compromise the data). Still happen occasionally.
 - 4 ns problem will not be fixed at the raw data level. Data not compromised but they complicate calibration.
- DAQ slow starts of run and other issues.
- CDC mass flow controller failure. Not diagnosed during run (no sign of MFC misbehavior ⇒ misdiagnosed as a leak). Lower CDC tracking and dEdx PID efficiencies.
- TPol noisy and initially unable to produce polarimetry. Noise issue ~fixed. No timely polarimetry for beam quality assessment.
- Active Collimator voltage adapter failures/loose cable issues. No enough spares to fix some Out channels. No alarm indicating A.C. failure lead to beam mis-steering and time loss.
- Backgrounds in profiler, CDC and FDC. Identified *via* absorption tests as Synchrotron radiation, but source not clearly identified. 100 µm W shield plate installed in collimator cave.
- Visible (expected) degradation of 58 µm diamond. Successfully realigned on new spot for last 5 weeks of the run.
- Unstable beam convergence. Demanding periodic optic optimization.
- No fast and reliable diagnostic available yet to assess beam convergence at main collimator.
- 5th-pass separator reliability: IOT problem and vacuum leaks caused significant Hall D downtime.
- Up to ~5 nA bleedthrough. Complicates TAC runs. Alleviated with V-wire radiator (runs at 30 nA).

- Solenoid magnet ramped down twice due to PXI comm. loss. Time losses were mitigated (straight track data taken, thin diamond alignment done, chance coincidence with RF studies).
- Timing shifts (4 ns, 32 ns and 100 ns).
 - Workaround 100 ns shifts implemented (they compromise the data).
 - Workaround 32 ns shifts implemented (they do not compromise the data). Still happen occasionally.
 - 4 ns problem will not be fixed at the raw data level. Data not compromised but they complicate calibration.
- DAQ slow starts of run and other issues.
- CDC mass flow controller failure. Not diagnosed during run (no sign of MFC misbehavior ⇒ misdiagnosed as a leak). Lower CDC tracking and dEdx PID efficiencies.
- TPol noisy and initially unable to produce polarimetry. Noise issue ~fixed. No timely polarimetry for beam quality assessment.
- Active Collimator voltage adapter failures/loose cable issues. No enough spares to fix some Out channels. No alarm indicating A.C. failure lead to beam mis-steering and time loss.
- Backgrounds in profiler, CDC and FDC. Identified *via* absorption tests as Synchrotron radiation, but source not clearly identified. 100 µm W shield plate installed in collimator cave.
- Visible (expected) degradation of 58 µm diamond. Successfully realigned on new spot for last 5 weeks of the run.
- Unstable beam convergence. Demanding periodic optic optimization.
- No fast and reliable diagnostic available yet to assess beam convergence at main collimator.
- 5th-pass separator reliability: IOT problem and vacuum leaks caused significant Hall D downtime.
- Up to ~5 nA bleedthrough. Complicates TAC runs. Alleviated with V-wire radiator (runs at 30 nA).
- Initially unable to run stable beam below ~30 nA for TAC run. Latter nA-BPM successfully tested allowed 5 nA operations.

- Solenoid magnet ramped down twice due to PXI comm. loss. Time losses were mitigated (straight track data taken, thin diamond alignment done, chance coincidence with RF studies).
- Timing shifts (4 ns, 32 ns and 100 ns).
 - Workaround 100 ns shifts implemented (they compromise the data).
 - Workaround 32 ns shifts implemented (they do not compromise the data). Still happen occasionally.
 - 4 ns problem will not be fixed at the raw data level. Data not compromised but they complicate calibration.
- DAQ slow starts of run and other issues.
- CDC mass flow controller failure. Not diagnosed during run (no sign of MFC misbehavior ⇒ misdiagnosed as a leak). Lower CDC tracking and dEdx PID efficiencies.
- TPol noisy and initially unable to produce polarimetry. Noise issue ~fixed. No timely polarimetry for beam quality assessment.
- Active Collimator voltage adapter failures/loose cable issues. No enough spares to fix some Out channels. No alarm indicating A.C. failure. Lead to beam mis-steering and time loss.
 - Backgrounds in profiler, CDC and FDC. Identified *via* absorption tests as Synchrotron radiation, but source not clearly identified. 100 μm W shield plate installed in collimator cave.
- Visible (expected) degradation of 58 µm diamond. Successfully realigned on new spot for last 5 weeks of the run.
- Unstable beam convergence. Demanding periodic optic optimization.
- No fast and reliable diagnostic available yet to assess beam convergence at main collimator.
- 5th-pass separator reliability: IOT problem and vacuum leaks caused significant Hall D downtime.
- Up to ~5 nA bleedthrough. Complicates TAC runs. Alleviated with V-wire radiator (runs at 30 nA).
- Initially unable to run stable beam below ~30 nA for TAC run. Latter nA-BPM successfully tested allowed 5 nA operations.

Statistics for Spring 2018 run

Scheduled time (Include extension. Exclude transformer repairs): 2014h (84 days)

Actual Run time (Include CEBAF and Hall inefficiencies): 1111.8h (46 days)

⇒ Running efficiency: 55%

Production triggers: 1.5×10¹¹ (0°: 22% / 90°: 22% / 45°: 21% / 135°: 22.% / A1.: 8%)

Main time losses imputable to Hall D: •DAQ: 38h

•Config. change: 29h

•Solenoid: 20h

•Active Col.: 8h

•Trigger: 6h

•Tpol: 4h

Comparison with other runs

Spring 2018

Actual Run time: 1111.8h

Running efficiency: 55%

Production triggers: 1.5×10¹¹

Spring 2017

Actual Run time: 354.1h

Running efficiency: 56%

Production triggers:4.7×10¹⁰

Spring 2016

Actual Run time: 458h

Running efficiency: 41%

Production triggers: 6.9×10⁹

Fall 2016

Fall 2017

Actual Run time: 10.5h

Running efficiency: 3%

Production triggers: 0

Actual Run time: 84h

Running efficiency: 5.4%

Production triggers: 0

Fall 2015

Actual Run time: 30.2h

Running efficiency: 20%

Production triggers: 0

Fall 2014

Actual Run time: 324h

Running efficiency: 34%

Production triggers: 0

Comparison

Comparison

Summary of the summary

Excellent CEBAF performance and very successful GlueX run for Spring 2018

