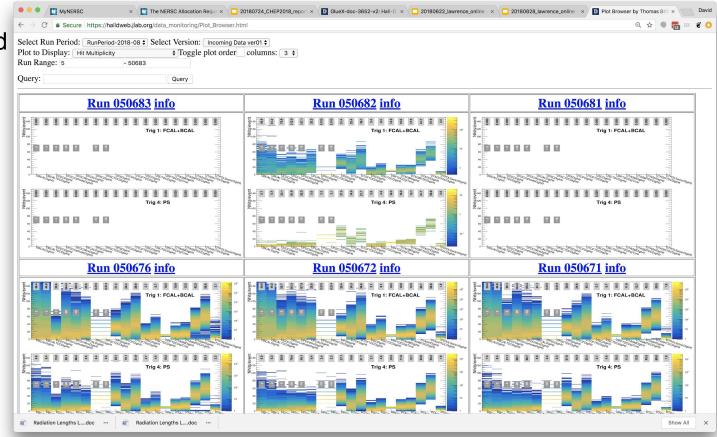
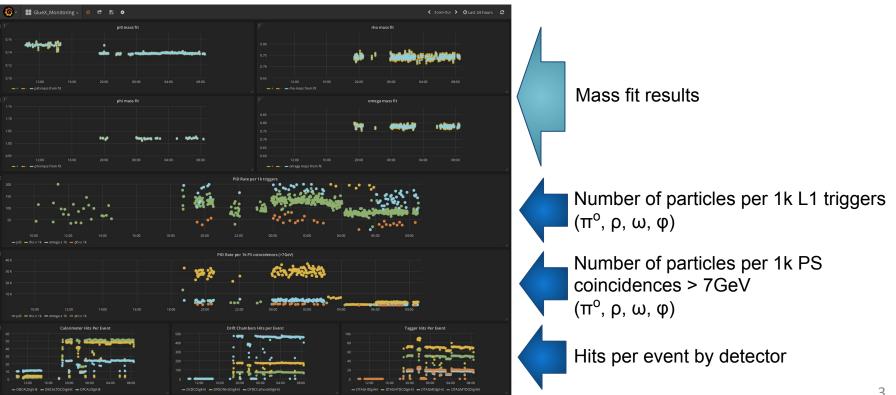
Hall-D Online/Monitoring Status

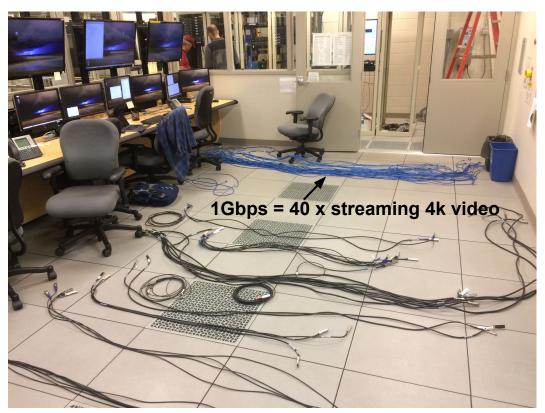

David Lawrence JLab September 28, 2018

Plot Browser updated to respond much quicker to user changes

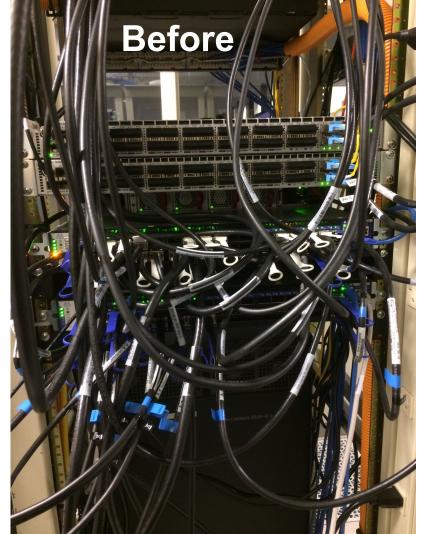
ver00 - RootSpy

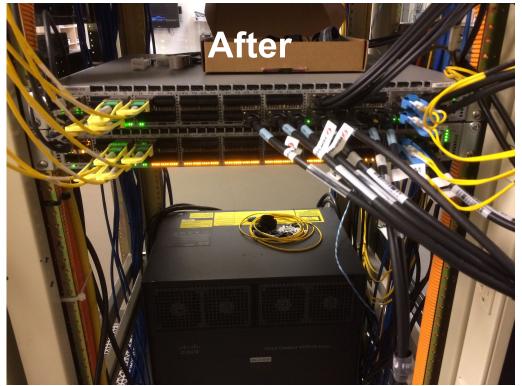

ver01 - Incoming Data

verXX - Monitoring Launches


Time Series Database

(Grafana + InfluxDB)




cites Dan (Grafana + InfluxDB) ## GlueX_Monitoring - 🍁 🗗 🖺 ♦ < Zoom Out ➤ ② Last 24 hours € Mass fit results Number of particles p L1 triggers ρ, ω, φ) 1k PS f particle coinc (π^{o}, ρ, ω) nt by detector

Hall-D Control Room Networking/Gluon Cleanup and DAQ Hardening

Networking/Computing Work Summary

- 40 Gbps Ethernet cards and switch installed
- Second 10Gbps uplink from switches in Hall-D
- Nodes rearranged to group DAQ nodes in same location
 - gluon118,gluon119 renamed gluon43,gluon44
- IB switches moved closer to compute nodes
- New 56Gbps IB cables installed with shorter runs
 - Old, less reliable cables have been excessed
- gluondaqfs w/ 10Gbps ethernet connection used for CODA and config files

Counting House
 Desktops upgraded to
 RHEL7

 gluon48 "accidentally" upgraded

gluon46 has been
 RHEL7 for some time

Keep in mind

gluons come in two types:

(not perfectly correlated with OS)

GLUON_TYPE = GENERAL GLUON TYPE = CONTROLS

CONTROLS: gluonXX where XX<40

GENERAL: everything else

The Word from Bulgaria (CHEP2018)

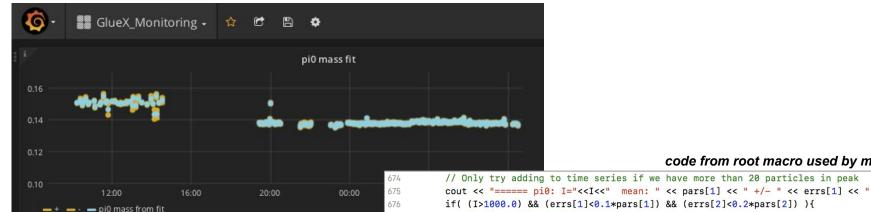
Example 1: Make your software citable

- Publish it if it's on GitHub, follow steps in https://quides.github.com/activities/citable-code/
- Otherwise, submit it to zenodo or figshare, with appropriate metadata (including authors, title, ..., citations of ... & software that you use)
- Get a DOI
- Create a CITATION file, update your README, tell people how to cite
- Also, can write a software paper and ask people to cite that (but this is secondary, just since our current system doesn't work well)

- [1] A. C. Irving and R. P. Worden, Phys. Rep. 34, 117 (1977).
- [2] V. Mathieu, I. V. Danilkin, C. Fernandez-Ramirez, M. R. Pennington, D. Schott, A. P. Szczepaniak, and G. Fox, Phys. Rev. D 92, 074004 (2015).
- [3] V. Crede and W. Roberts, Rep. Prog. Phys. **76**, 076301 (2013).
- [4] G. R. Goldstein and J. F. Owens, Phys. Rev. D 7, 865 (1973), G. R. Goldstein work in progress.
- [5] J. M. Laget, Phys. Rev. C 72, 022202 (2005).
- [6] J. M. Laget, Phys. Lett. B 695, 199 (2011).
- [7] V. Mathieu, G. Fox, and A. P. Szczepaniak, Phys. Rev. D 92, 074013 (2015).
- [8] J. Nys, V. Mathieu, C. Fernández-Ramírez, A. N. H. Blin, A. Jackura, M. Mikhasenko, A. Pilloni, A. P. Szczepaniak, G. Fox, and J. Ryckebusch (JPAC), Phys. Rev. D 95, 034014 (2017).
- [9] A. Donnachie and Yu. S. Kalashnikova, Phys. Rev. C **93**, 025203 (2016).
- [10] H. Al Ghoul *et al.* (GlueX Collaboration), AIP Conf. Proc. **1735**, 020001 (2016).
- [11] F. Barbosa, C. Hutton, A. Sitnikov, A. Somov, S. Somov, and I. Tolstukhin, Nucl. Instrum. Methods A 795, 376 (2015).
- [12] M. Dugger et al., arXiv:1703.07875 (Unpublished).

- [13] Y. Van Haarlem *et al.*, Nucl. Instrum. Methods A **622**, 142 (2010).
- [14] V. V. Berdnikov, S. V. Somov, L. Pentchev, and B. Zihlmann, Instrum. Exp. Tech. 58, 25 (2015).
- [15] B. D. Leverington *et al.*, Nucl. Instrum. Methods A **596**, 327 (2008).
- [16] E. S. Smith (GlueX Collaboration), AIP Conf. Proc. 1753, 070006 (2016).
- [17] K. Moriya et al., Nucl. Instrum. Methods A 726, 60 (2013).
- [18] R. Brun et al., Report No. CERN-DD-78-2-REV (1978).
- [19] R. L. Anderson, D. Gustavson, J. R. Johnson, I. Overman, D. Ritson, B. H. Wiik, and D. Worcester, Phys. Rev. D 4, 1937 (1971).
- [20] R. L. Anderson, D. Gustavson, J. R. Johnson, D. Ritson, B. H. Wiik, W. G. Jones, D. Kreinick, F. V. Murphy, and R. Weinstein, Phys. Rev. D 1, 27 (1970).
- [21] I. S. Barker, A. Donnachie, and J. K. Storrow, Nucl. Phys. B 95, 347 (1975).
- [22] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevC.95.042201 for a table of the measured asymmetry values and uncertainties as a function of proton momentum transfer, which are also available at https://www.hepdata.net/record/ins1511149.

11


- [1] A. C. Irving and R. P. Worden, Phys. R
- [2] V. Mathieu, I. V. Danilkin, C. Fern mirez, M. R. Pennington, D. Schott, A. P. Szczeponiek and G. Fox, Phys. Rev. D 92, 074004 (2015).
- [3] V. Crede and W. Roberts, Rep. 1705. 76, 076301 (2013).
- [4] G. R. Goldstein and J. F. Owens, Phys. R. Goldstein work in progress.
- [5] J. M. Laget, Phys. Rev. C 72, 022202 (2005).
- [6] J. M. Laget, Phys. Lett. B 695, 199 (2011).
- [7] V. Mathieu, G. Fox, and A. P. Szczepaniak, Phys. Rev. D **92**, 074013 (2015).
- [8] J. Nys, V. Mathieu, C. Fernández-Ramírez, A. N. H. Blin, A. Jackura, M. Mikhasenko, A. Pilloni, A. P. Szczepaniak, G. Fox, and J. Ryckebusch 95, 034014 (2017).

Polarimeter Design

- [9] A. Donnachie and (2016).
- [10] H. Al Ghoul *et al.* (GlueX Collaboration), AIP Conf. Proc. **1735**, 020001 (2016).
- [11] F. Barbosa, C. Hutton, A. Sitnikov, A. Somov, S. Somov, and I. Tolstukhin, Nucl. Instrum. Methods A 795, 376 (2015).
- [12] M. Dugger et al., arXiv:1703.07875 (Unpublished).

- [13] Y. Van Haarlem *et al.*, Nucl. Instrum. Methods A **622**, 142 (2010).
- [14] V. V. Berdnikov, S. V. Somov, L. Pentchev, and B. Zihlmann, Instrum. Exp. Tech. 58, 25 (2015).
- [15] B. D. Leverington *et al.*, Nucl. Instrum. Methods A **596**, 327 (2008).
- [16] E. S. Smith (GlueX Collaboration), AIP Conf. Proc. 1753, 070006 (2016).
- [17] K. Moriya et al., Nucl. Instrum. Methods A **726**, 60 (2013).
- [18] R. Brun et al., Report No. CERN-DD-78-2-REV (1978).
- [19] R. L. Anderson, D. Gustavson, J. R. Johnson, I. Overman, D. Ritson, B. H. Wiik, and D. Worcester, Phys. Rev. D 4, 1937 (1971).
- [20] R. L. Anderson, D. Gustavson, J. R. Johnson, D. Ritson, B. H. Wiik, W. G. Jones, D. Kreinick, F. V. Murphy, and R. Weinstein,
 - Phys. R I. S. Bar 347 (19 manual for Geant
- [22] See Suppremental waterial at http://mx.aps.org/supplemental/ 10.1103/PhysRevC.95.042201 for a table of the measured asymmetry values and uncertainties as a function of proton momentum transfer, which are also available at https://www.hepdata.net/record/ins1511149.

Backups

677

678 679 680

681

682

684

685

686

687 688

689

690

691

692 693

694

695

696

697

698

699

700

if(Ntrig>0.0){

stringstream ss:

ss << ",counts="<<I;

ss << "fit_stats,ptype=pi0 ";

ss << "rate_per_1ktrig="<<rate_per_1ktrig;

rs ResetHisto("/highlevel/TwoGammaMass");

PIDNorms->SetBinContent(NORM_pi0_ps , Nps);

PIDNorms->SetBinContent(NORM pi0 trig, Ntrig tot);

ss << ",rate per 1kps="<<rate per ps;

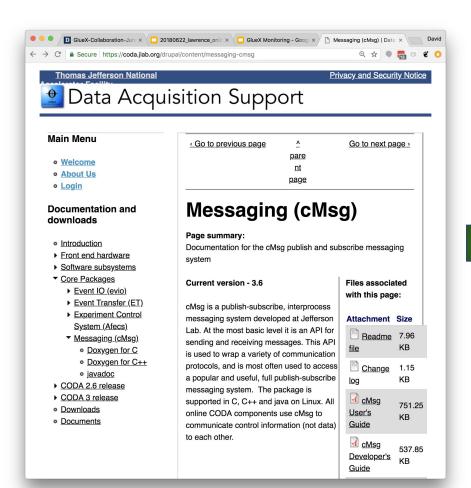
ss << ",Ntria phys="<<Ntria phys;

if(rs GetFlag("RESET AFTER FIT")) {

code from root macro used by monitoring // Only try adding to time series if we have more than 20 particles in peak

- Values may be added to time series DB from online macros using special RootSpy calls
- No special preparation of tables in DB is needed a priori
 - Special RSTimeSeries program is run in background that handles this independent of RootSpy GUI

```
if( (I>1000.0) && (errs[1]<0.1*pars[1]) && (errs[2]<0.2*pars[2]) ){
  // Add to time series
  InsertSeriesMassFit("pi0", pars[1], pars[2], errs[1], errs[2], unix_time);
  // per 1k triggers
```


ss << ",Ntrig_ps="<<Ntrig_ps; ss << ", Nps="<<Nmy_ps; if(unix_time!=0.0) ss<<" "<<(uint64_t)(unix_time*1.0E9); // time is in units of ns InsertSeriesData(ss.str()); // Optionally reset the histogram so next fit is independent of this one


14

sigma: "<< p

RootSpy Family of Programs

hd_ana	Farm monitoring processes that produce histograms
RootSpy	GUI program shift-takers use to view live histograms/macros
RSelog	Program launched from GUI to make e-log entry into HDMONITOR
RSArchiver	Started by DAQ to continuously rewrite ROOT file with cumulative histograms. File is source of <i>ver00 RootSpy</i> in Plot Browser
RSTimeSeries	Started by DAQ to continuously gather statistics and run macros in background to write to time series DB

