Tagger Microscope Fiber Upgrade Results Richard Jones

University of Connecticut February 21, 2019

GlueX Collaboration Meeting, Newport News, Feb. 21-23, 2019

Tagger microscope upgrade

- Very large variation is seen in the transmission of the light guide fibers from St Gobain.
- Original production: some of the fibers met the design goal for light yield, *most did not.*
- Numerous improvements in fab procedures has increased the average yield by factor ~3
- 300 of 510 fibers were replaced in 1-2017
- remaining 7 replacement bundles are now complete

Tagger microscope upgrade

- Seven new fiber bundles produced (30 fibers per bundle)
 - Cut to length & polished ends (top left picture)
 - Fused SciFi to light guides
 - Light yield test (Darkbox testing)
 - Bent fiber bundle (top center picture)
 - Light yield test (*Darkbox testing*)
 - Packed for shipment to JLab (top right picture)

• Seven old bundles removed from the TAGM were tested for light yield (Darkbox)

Tagger microscope upgrade

Tests Performed

- After fusing SciFi
- After Bending

Additional Tests

- All 10 bundles removed from TAGM
- Normalization tests (*in progress*)

Additional filter added (New fibers were so much better)

TAGM dark-box tests

Bundles that have seen beam: (Single-clad fibers)

- Average of the six painted bundles 41.0 pixels
- Average of the four unpainted bundles ... 81.0 pixels

• Average of the seven new bundles 206.5 pixels

TAGM dark-box tests

- What accounts for the low-yield tail on the upgraded fibers?
 - Material imbedded in the cladding

TAGM dark-box tests

- What accounts for the low-yield tail on the upgraded fibers?
 - Other defects in the cladding

Tagger microscope upgrade

• Reasons for this large improvement factor

- Multi-clad fibers
 - Less leaky modes

• Use of a Hot-air Bending Unit

■ No thermal shock, releases internal stresses, & no exposure to hot water → No crazing or chance for fiber kinking

• Better fusing of SciFi / light guide joint

- Under a microscope we could not see the boundary between fibers when we fused two light guides together
- Most fuses had no visible gap between the mating claddings
- \circ \quad Better polishing technique \rightarrow No rounding of the fiber ends
 - Motor operated wheel with a 3D printed jig for consistent alignment
- New fusing ferrules have a slightly larger internal chamber, ↑ cross section

Two Best Pulled Fibers - Old Bundle 4

Summary comparison: old vs new

Summary comparison: old vs new

all 510 fibers in TAGM
replaced in Jan, 2019

Backup slides

Top 12 Old Fibers

Two Bad Fibers from Old Bundles

Irradiated Fibers = 1:4 Bundle 1/2 = 2:4 1 Bundle 1/2

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9

Relative Run Number

Best Stage 3 and Old Fibers

Run 2

Run 3

Best Stage 3 and Irradiated Fibers

200 ------

Run 1

350 300 -250

Run 4

Relative Run Number

Run 5

Run 6

Run 7

- 466 - 10:11 Bundle 9/10

Worst Stage 3 and Old Fibers

Worst Stage 3 and Irradiated Fibers - 518 - 1071 - 9:1 Bundle 9/10 2 Bundle 11/12 - 11:4 4 Bundle 11/12 - 3:5 5 Bundle 3/4 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7

Best and Almost Worst Old Fibers

17

Best Fibers All Stages

18