Measurement of the Photon Beam Asymmetry Σ for

$$
\gamma+p \rightarrow K^{+} \Sigma^{0} \text { at } E_{\gamma}=8.5 \mathrm{GeV} \text { in GlueX }
$$

Nilanga Wickramaarachchi and Moskov Amaryan

(i)

OLD DOMINION

U N I VERSITY
On behalf of the GlueX Collaboration

APS April Meeting 2019, Denver, CO

Introduction

- Important channels in kaon photoproduction

$$
\gamma p \rightarrow K Y(Y=\Lambda, \Sigma)
$$

- Useful to study pair creation of strange and anti-strange quarks
- Different channels can contribute

- RPR-2007 model $\boldsymbol{\rightarrow}$ T. Corthals, T. Van Cauteren, J. Ryckebusch, and D. G. Ireland, Phys. Rev. C 75, 045204 (2007)

Physics Motivation

- Linearly polarized photon beam to study exchange of parity
- natural-parity $\rightarrow P=(-1)^{J}$
- unnatural-parity $\Rightarrow P=(-1)^{J+1}$
- "Stichel's theorem" (Z. Phys. 180, 170 (1964))
- to the leading power in s, cross section for photon polarized \perp to production plane dominated by natural-parity exchange
- for photon polarized || to production plane dominated by unnatural-parity exchange

$$
\text { Beam Asymmetry } \quad \Sigma=\frac{\left(d \sigma_{\perp} / d t\right)-\left(d \sigma_{\|} / d t\right)}{\left(d \sigma_{\perp} / d t\right)+\left(d \sigma_{\|} / d t\right)}
$$

GlueX Detector

- Jefferson Lab, Newport News, VA, USA
- Hall D
- CEBAF -12 GeV electron beam

- Photons are linearly polarized relative to crystal axes in the diamond
- Coherent bremsstrahlung
- Two polarization modes: PARA $\boldsymbol{\rightarrow} \|$

$$
\mathrm{PERP} \Rightarrow \vec{E} \underset{4}{\perp}
$$

Event Selection

$$
\gamma+p \rightarrow K^{+}+\Sigma^{0}(1193) \Rightarrow \Sigma^{0} \rightarrow \Lambda \gamma
$$

- Select combinations of particles matching the topology of

$$
\gamma p \rightarrow K^{+} \Lambda \gamma\left(\Lambda \rightarrow \pi^{-} p\right)
$$

- Two positive tracks, one negative track and one neutral shower in final state
- $-0.08 \mathrm{GeV}^{2}<M_{X}^{2}<0.08 \mathrm{GeV}^{2}$
- Kinematic fit satisfying the conservation of energy and momentum (confidence level > 0.0001)
- PID for charged tracks was done with TOF and for photons with EM calorimeters

Invariant Mass of $\pi^{-} p$

- Coherent peak $\boldsymbol{\rightarrow} 8.2<E_{\text {beam }}<8.8 \mathrm{GeV}$

- Accidentals are scaled by the time window

Invariant Mass of $\pi^{-} p \gamma$

- Events within $1.107<M_{\pi^{-} p}<1.125 \mathrm{GeV} / \mathrm{c}^{2}$

$M_{\pi^{-} p \gamma}$ vs FCAL shower quality

- Cut to remove extra showers from hadrons misidentified as photons in forward calorimeter (FCAL)
- Shower quality variable \Rightarrow developed using neural net technology

Cut on shower quality

- Shower quality $>0.5 \Rightarrow$ clean Σ^{0} peak
- Background of uncorrelated photons eliminated

-t distribution

- Events within $1.169<M_{\pi^{-} p \gamma}<1.217 \mathrm{GeV} / \mathrm{c}^{2}$

- Both t - and u-channel contributions

Photon Beam Asymmetry

$$
\sigma=\sigma_{0}\left[1-P_{\gamma} \Sigma \cos 2\left(\phi_{K^{+}}-\phi_{\gamma}^{l i n}\right)\right]
$$

In terms of PARA and PERP yields and polarizations

$$
\begin{array}{c|l}
\begin{aligned}
\text { Yield } \\
\text { Asymmetry }
\end{aligned} & \frac{Y_{\perp}-F_{R} Y_{\|}}{Y_{\perp}+F_{R} Y_{\|}}=\frac{\left(P_{\perp}+P_{\|}\right) \Sigma \cos 2\left(\phi_{K^{+}}-\phi_{0}\right)}{2+\left(P_{\perp}-P_{\|}\right) \sum \cos 2\left(\phi_{K^{+}}-\phi_{0}\right)}
\end{array}
$$

- Σ - Beam asymmetry
- P_{γ} - Degree of photon polarization
- $\phi_{\gamma}^{l i n}$ - Azimuthal angle of photon beam linear polarization plane

Yield Asymmetry -t=0.1-0.35 bin for 45/135

Beam Asymmetry of $\gamma p \rightarrow K^{+} \Sigma^{0}$

- Combined result from two orientation sets (errors are statistical only)

$\Sigma \sim 1$
Natural parity exchange (K*(892))

RPR-2007 model: Phys. Rev. C 75, 045204 (2007)
SLAC data: Phys. Rev. D 201553 (1979)

Outlook

- Work on the systematics
- Finalize the asymmetry measurement for u-channel (first time measurement)
- Work on the draft paper

Backup - Effect of the cut on MC

$K^{+} \Sigma^{0} t$-channel

$M_{\pi^{-} p \gamma}$
$K^{+} \Lambda \quad t$-channel

$M_{\pi^{-} p \gamma}$

- FCAL shower quality >0.5 cut eliminates the background coming from $K^{+} \Lambda t$-channel
- No loss of signal events due to the cut

Backup-Yield Asymmetry (0/90) for t bins

$-t=0.1-0.35$

$-t=0.50-0.70$
$-t=0.35-0.50$

Backup-Yield Asymmetry (45/135) for t bins $-t=0.1-0.35$
 $-t=0.35-0.50$

$-t=0.50-0.70$
$-t=0.70-1.40$

