Spin-Density Matrix Elements for Vector-Meson Photoproduction at GlueX

Alexander Austregesilo for the GlueX Collaboration

15th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU2019)

> Carnegie Mellon University, Pittsburgh, PA June 3rd, 2019

2 Method

- Extended Maximum-Likelihood Fit
- Fit Evaluation

3 Results

•
$$ho(770)
ightarrow \pi^+\pi^-$$

•
$$\omega(782)
ightarrow \pi^+\pi^-\pi^0$$

• $\phi(1020) \rightarrow K^+K^-$

Outlook

GlueX Detector

Carnegie Mellon University

 \rightarrow S. Dobbs, Searching for Exotic Hadrons at GlueX (Monday morning)

Photon Beam Line

Carnegie Mellon University

Photoproduction

Complementary Production Mechanism

- Photon coupling via vector meson dominance
- Wide variety of quantum numbers I^GJ^{PC} accessible
- Photon polarization provides constraints on produced systems
- Understanding of **production mechanism** is prerequisite for interpretation
- Very limited photoproduction data existing at these energies

Production Mechanism Spin-Density Matrix Elements

Carnegie Mellon University

- Full angular distribution of vector meson production and decay is described by spin-density matrix elements ρ^k_{ii}
- Linear beam polarization provides access to nine linearly independent SDMEs
- Intensity *W* is expressed as function of angles cos ϑ, φ, Φ and degree of polarization *P*_γ

 $W(\cos\vartheta,\varphi,\Phi) = W^{0}(\cos\vartheta,\varphi) - P_{\gamma}\cos(2\Phi)W^{1}(\cos\vartheta,\varphi) - P_{\gamma}\sin(2\Phi)W^{2}(\cos\vartheta,\varphi)$

$$\begin{split} W^{0}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left(\frac{1}{2} (1-\rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0}-1)\cos^{2}\vartheta - \sqrt{2} \operatorname{Re}\rho_{10}^{0}\sin2\vartheta\cos\varphi - \rho_{1-1}^{0}\sin^{2}\vartheta\cos2\varphi \right) \\ W^{1}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left(\rho_{11}^{1}\sin^{2}\vartheta + \rho_{00}^{1}\cos^{2}\vartheta - \sqrt{2} \operatorname{Re}\rho_{10}^{1}\sin2\vartheta\cos\varphi - \rho_{1-1}^{1}\sin^{2}\vartheta\cos2\varphi \right) \\ W^{2}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left(\sqrt{2} \operatorname{Im}\rho_{10}^{2}\sin2\vartheta\sin\varphi + \operatorname{Im}\rho_{1-1}^{2}\sin^{2}\vartheta\sin2\varphi \right) \end{split}$$

Schilling et al [Nucl. Phy. B. 15 (1970) 397]

Previous Measurements SLAC, Ballam *et al.* [Phy. Rev. D, 7 (1973) 3150]

$\rho(770)$

- Few thousand events, 7 bins in t
- s-channel helicity conservation: $\rho_{1-1}^1 = -\text{Im}\rho_{1-1}^2 = 0.5$ in helicity frame, all others = 0
- Parity asymmetry: $P_{\sigma} = 2\rho_{1-1}^1 - \rho_{00}^1$
- Dominated by natural parity exchange $P = (-1)^J$

$\omega(782)$

Several hundred events, 3 bins in t

ϕ (1020)

Few hundred events, not binned in t

JPAC Model

Regge model, fit to SLAC data

Carnegie

Mellon <u>Un</u>iversity

- Detailed prediction for t-dependence of ρ, ω and φ meson production
- s-channel helicity conservation at t = 0

Mathieu *et al.* [Phy. Rev. D, 97 (2018) 094003] \rightarrow Single and Double Meson Production at JLab (Tuesday)

Vector-Meson Photoproduction $\gamma \rho \rightarrow \rho(770)\rho$

Full 2017 data: >10M signal events in each of the 4 orientations

Carnegie Mellon

University

Extraction of SDMEs

Carnegie Mellon University

 $W(\cos\vartheta,\varphi,\Phi) = W^0(\cos\vartheta,\varphi) - P_\gamma \cos(2\Phi) W^1(\cos\vartheta,\varphi) - P_\gamma \sin(2\Phi) W^2(\cos\vartheta,\varphi)$

Measured Intensity $I(\Omega) \propto W(\cos \vartheta, \varphi, \Phi)$

• Normalization integral evaluated by a phase-space Monte Carlo sample with the acceptance $\eta(\Omega) = 0/1$

Fit Evaluation $\gamma p \rightarrow \rho(770)p, -t \in [0.05, 0.15] \, \text{GeV}^2/c^2$

Carnegie Mellon University

• red: accidental background

Result in Bins of Momentum Transfer $t_{\gamma p \rightarrow \rho(770)p}$

- 0.05 GeV²/ c^2 bin width in t
- Average of 4 orientations
- Errors dominated by systematics

Carnegie

Mellon <u>Univer</u>sity

- SCHC valid for $t \rightarrow 0 \,\text{GeV}^2/c^2$
- Agree with JPAC to $\sim 0.5 \, {\rm GeV^2}/c^2$

Result in Bins of Momentum Transfer $t_{\gamma p \rightarrow \rho(770)p}$

- 0.05 GeV²/ c^2 bin width in t
- Average of 4 orientations
- Errors dominated by systematics

Carnegie Mellon

University

- SCHC valid for $t \rightarrow 0 \,\text{GeV}^2/c^2$
- Agree with JPAC to $\sim 0.5 \, {\rm GeV^2}/c^2$

Result in Bins of Momentum Transfer $t_{\gamma p \rightarrow \rho(770)p}$

- $0.05 \,\mathrm{GeV}^2/c^2$ bin width in t
- Average of 4 orientations
- Errors dominated by systematics

Carnegie

Mellon University

- SCHC valid for $t \rightarrow 0 \,\text{GeV}^2/c^2$
- Agree with JPAC to $\sim 0.5 \, {\rm GeV^2}/c^2$

Parity Exchange

Ballam et al. [Phy. Rev. D, 7 (1973) 3150]

Spin-density matrix can be separated in contributions from natural and unnatural parity exchange in the t channel

$$\rho_{ik}^{\rm N,U} = \frac{1}{2} (\rho_{ik}^{\rm 0} \mp (-1)^i \rho_{-ik}^{\rm 1})$$

Schilling et al. [Nucl. Phy. B, 15 (1970) 397]

Carnegie

Mellon University

Only significant contribution from ρ_{11}^{N}

 \Rightarrow Dominant natural parity exchange

Parity Exchange $\gamma p \rightarrow \rho(770)p$

• Good agreement with JPAC for natural parity exchange at below $0.5 \,\text{GeV}^2/c^2$

Excellent agreement for unnatural parity exchange

Carnegie Mellon

University

ω (782) SDMEs

- Only data of commissioning run
- 4 t bins in [0.1,0.8] GeV²/c²
- Average of 2 orientations
- Good agreement with prediction
- Radiative decay also analyzed

ω (782) SDMEs

- Only data of commissioning run
- 4 t bins in [0.1,0.8] GeV²/c²
- Average of 2 orientations
- Good agreement with prediction
- Radiative decay also analyzed

ϕ (1020) SDMEs

ϕ (1020) SDMEs

Summary and Outlook

Carnegie Mellon University

Summary

- Spin-density matrix elements extracted for $\rho(770), \omega(782)$ and $\phi(1020)$
- Statistical precision increased by orders of magnitude
- Natural parity exchange dominates at $E_{\gamma} = 9 \text{ GeV}$ for $t \rightarrow 0$
- General agreement with models for $t \lesssim 0.5 \, {
 m GeV}/^2 c^2$
- Analysis also used to tune and confirm MC simulation

Summary and Outlook

Carnegie Mellon University

Summary

- Spin-density matrix elements extracted for $\rho(770), \omega(782)$ and $\phi(1020)$
- Statistical precision increased by orders of magnitude
- Natural parity exchange dominates at $E_{\gamma} = 9 \text{ GeV}$ for $t \rightarrow 0$
- General agreement with models for $t \lesssim 0.5 \,\text{GeV}/^2 c^2$
- Analysis also used to tune and confirm MC simulation

Outlook

- Full GlueX-I data set will be available this summer
- Results serve as input to improved model of production process
- Prerequisite for interpretation of exotic signals