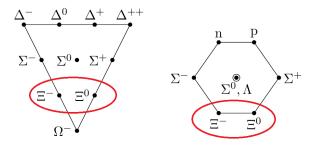


Photoproduction of $\Xi^-(1320)$ at GlueX

Ashley Ernst for the GlueX Collaboration

> Department of Physics Florida State University


The 15th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2019) June 7th, 2019

Cascade baryons Ξ

- The baryon spectrum provides a probe of QCD
- ► SU(3) flavor symmetry results in a decuplet and an octet where each member of the multiplet has similar properties.
- N* extensively studied

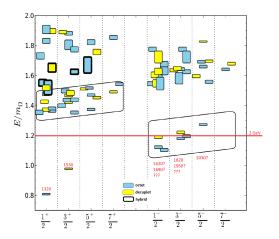
Cascade baryons Ξ

- ► Should be as many Ξ*s as N*s and Δ*s combined
 - ► N: 20 *** and **** states
 - ► Δ: 12 *** and **** states
 - ► Ξ: 6 *** and **** states
- Experimentally difficult to produce
- Ξ 's on the back burner still the 1980s

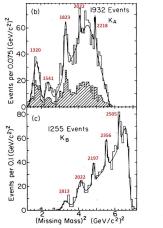
		Overall
Particle	J^P	Status
$\Xi(1318)$	$1/2^+$	****
$\Xi(1530)$	$3/2^{+}$	****
$\Xi(1620)$		*
$\Xi(1690)$		***
$\Xi(1820)$	$3/2^{-}$	***
$\Xi(1950)$		***
$\Xi(2030)$	$5/2^{?}$	***
$\Xi(2120)$		*
$\Xi(2250)$		**
$\Xi(2370)$		**
$\Xi(2500)$		*
	. –	

Current status of the Ξ resonances from the 2019 PDG update.

assumption

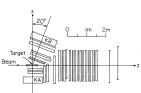


Cascade baryons, Ξ


- Lattice QCD predicts a large amount of states
- Two states in the first excitation band have never been seen
- Only the 1320 and 1530 have been seen in photoproduction

HadSpec: Robert G. Edwards et al. Phys. Rev. D87 (2013) 054506

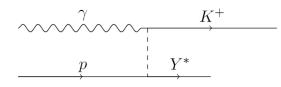
Experimental Landscape of Ξ

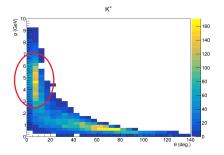


Jenkins, Charles M. et al. Phys.Rev.Lett. 51 (1983)

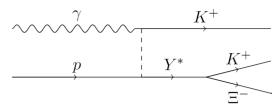
MENU 2019 Ashley Ernst - (acernst@jlab.org)

- Most knowledge is from Kaon production in the 1960-80s.
- ► Example: MultiParticle Spectrometer at BNL from the 1980s

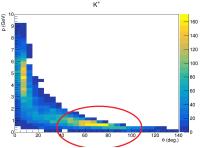

$$K^- p o K^+ (X)^-$$

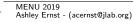

Modern	MPS	PDG(1982)	PDG(2019)
Particle	Particle	Status	Status
$\Xi(1320)$	$\Xi(1320)$	****	****
$\Xi(1530)$	$\Xi(1541)$	****	****
$\Xi(1620)$		**	*
$\Xi(1690)$		**	***
E(1820)	$\Xi(1822)$	***	***
E(1950)		**	***
E(2030)	$\Xi(2022)$	***	***
E(2120)		*	*
E(2250)	$\Xi(2214)$	*	**
E(2370)	$\Xi(2356)$	**	**
E(2500)	$\Xi(2505)$	**	*

Photoproduction of Ξ

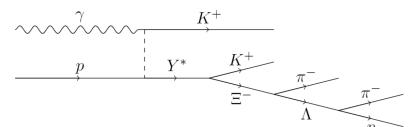


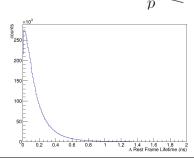
- No direct production due to OZI suppression
- High momentum K⁺ near beamline through t-channel production mechanism
- Not much is known about the intermediate hyperon



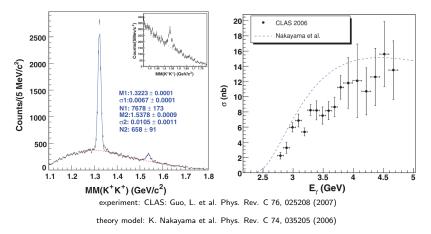


Photoproduction of Ξ


- Excited intermediate hyperon decays to Cascade baryon
- Decay K^+ is low momentum and wider polar angle
- Previous photoproduction experiments studied $MM(K^+K^+)$

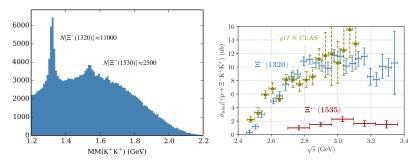


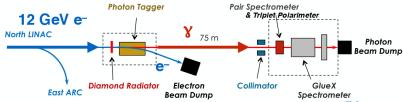
Photoproduction of Ξ


- GlueX has exclusivity resulting in unique access to decay angular distributions
- Detached vertex of Ξ and Λ can also be seen
- Detached vertices are useful in reducing background

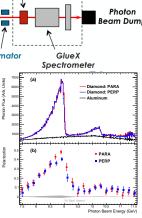
Previous measurements of $\Xi^-(1320)$ cross section

- Total cross section at CLAS g11 for E_{γ} up to 4.75 GeV
- Statistical and systematic errors shown



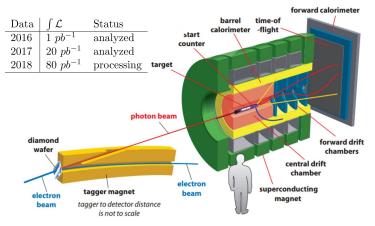

Previous measurements of $\Xi^-(1320)$ cross section

- ▶ Total cross section at CLAS g12 for E_{γ} up to 5.4 GeV
- ► Statistical errors shown with additional 8.8% systematic errors
- Expectation of cross section to plateau with increasing beam energy



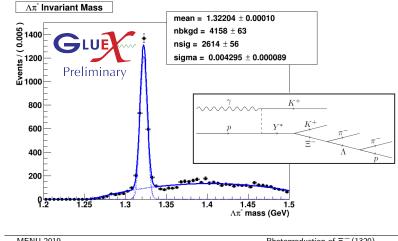
CLAS: J. T. Goetz et al. Phys. Rev. C 98, 062201 (2018)

GlueX Beamline

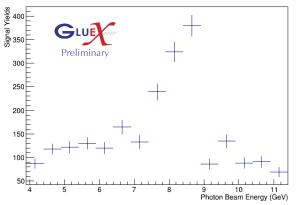


- Up to ${\sim}12~{\rm GeV}$ in e^- energy
- ➤ 9 GeV linearly polarized photon beam from coherent Bremsstrahlung
- $1-5*10^7\gamma/s$ in the coherent peak

GlueX


- Spectroscopy with nearly hermetic detector
- Exclusive final states

$\Xi^-(1320)$ at GlueX


- $\blacktriangleright~\sim 20\%$ of GlueX Phase-I
- \blacktriangleright Kinematic fitter constrains 4-momentum, vertices, and Λ mass

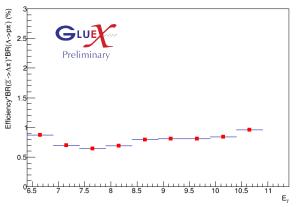
Ingredients for $\Xi^-(1320)$ Cross Section

$$\sigma = \frac{\mathbf{N}}{\text{Target}*\text{Flux}*\text{BR}*\epsilon}$$

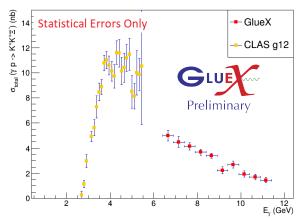


Ingredients for $\Xi^-(1320)$ Cross Section

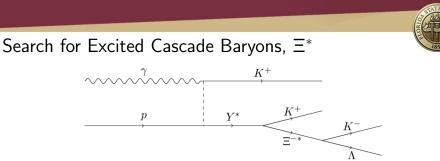
$$\sigma = \frac{N}{\textit{Target}*\textit{Flux}*\textit{BR}*\epsilon}$$



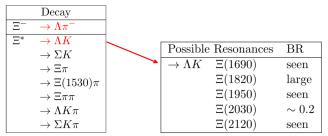
Ingredients for $\Xi^-(1320)$ Cross Section


$$\sigma = \frac{N}{\text{Target}*\text{Flux}*\text{BR}*\epsilon}$$

Efficiency*BR(Ξ)*BR(Λ)

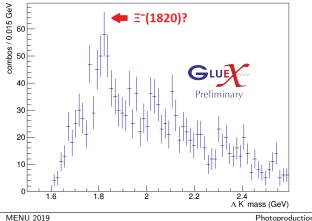

$\Xi^-(1320)$ Cross Section at GlueX

E Cross Section


CLAS: J. T. Goetz et al. Phys. Rev. C 98, 062201 (2018)

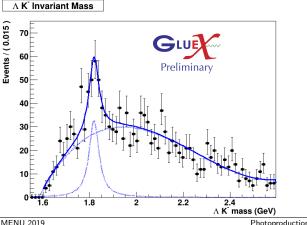
 $\blacktriangleright \ \gamma p \to K^+ K^+ K^- \Lambda$

► Kaon decays expected to be narrow


MENU 2019 Ashley Ernst - (acernst@jlab.org)

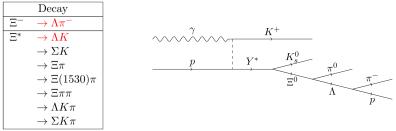
Search for Excited Cascade Baryons, Ξ^*

Ashley Ernst - (acernst@jlab.org)


- ▶ Significant background from $\gamma p \rightarrow K^+ \phi \Lambda$
- $\Xi^-(1820)$ signal has a significance of $< 5\sigma$

Search for Excited Cascade Baryons, Ξ^*

- ▶ Significant background from $\gamma p \rightarrow K^+ \phi \Lambda$
- $\Xi^-(1820)$ signal has a significance of $< 5\sigma$
 - \implies need more data



Outlook for Ξ Spectroscopy: GlueX-I

Future work:

- ► J measurement and isospin mass splitting
- Beam asymmetry Σ for the intermediate hyperon $\gamma p \rightarrow K^+ Y^*_{\Xi}$
- ► Similar analysis for neutral ground state $\gamma p \rightarrow K^+ K_s^0 \Xi^0(1320)$
- Search for excited states

Outlook for Hyperon Spectroscopy: GlueX-II

- Higher beam intensities.
- DIRC will improve π/K separation.
- ► Many other strangeness channels are being analyzed.

Summary

- A clean signal for $\Xi^-(1320)$ is seen.
- Preliminary total cross section results are shown with only statistical errors.
- Exclusivity and linear beam polarization give access to new measurements.
- ► Search for excited Ξ's is ongoing.
- Establishes a firm basis for a Cascade baryon program.
- ► GlueX Phase-II will improve statistics and event selection.
- GlueX has potential for robust strangeness program.

Thank you!

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship

Program under Grant No. 1449440.

