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For the reaction Yp — nmp we seek to formulate the intensity in the reflectivity basis in such a way that
it is easily incorporated into the AMPTOOLS package for amplitude analysis. The intensity describes the
dependence of the cross section on various kinematic variables:
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where ® is the angle of the beam photon polarization with respect to the production plane and € is the
direction of 7 in the helicity frame. We follow the development in V. Mathieu et al. (arXiv:1906.04841),

where Eq. 3 is
1(Q,®) = 1°(Q) — P,I*(Q) cos 2& — P, I1%(1) sin 2. (2)

Here P, is the fraction of linear polarization of the beam, and 0 < P, < 1. We suppress the helicity indices
of the target and recoil nucleon in what follows, and then re-introduce them later when formulating the final
expression for the intensity.

Again, following Mathieu et al., we have

Q) = £33 A4, (3)
A

Q) = YA (4)
A

() (). (5)

I
ol %
2\g
s
o

In the expressions above A indexes the photon beam helicity, which takes on the values of +, —. We can
then rewrite the intensity as

I(Q,9) = g[A_(Q)Ai(Q) + A.;.Aj_(Q) — Pycos2® (A_(Q)AL(Q) + AL (Q) A (Q)) —
iPysin2® (A_(Q)AL(Q) — Q)]
= g (A (A= () + A+Ai(Q) P, eZM)A (Q)A%(Q) — Pye PPAL (DA (Q)). (6)

Now define the amplitudes A, (Q) and A_(£):
AL(Q,®) = eTPAL(Q). (7)
In terms of these amplitudes the intensity becomes
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We now would like to expand the amplitudes in partial waves in the beam photon helicity basis and then
transform to the reflectivity basis. Again, following the notation of Mathieu et al. Eq. 5 (and suppressing
the nucleon helicity indices):
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Using Egs. D2a and D2b from the reference, which express the helicity amplitudes T/{m in terms of

reflectivity amplitudes (9T, we can write expressions for the partial wave expansions of fli(Q, D).
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where in the last line of each expression we have defined phase-rotated spherical harmonics:

ZM(Q,®) = Y, (Q)e . (12)

Now we can write expression for the sums and differences that appear in the intensity

Ay (9,0)+A-(2,0) =2) (OTLRe[Z1 (2, @)] +§ T} Im(Z (2, @)]) (13)
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AL (2,0) - A_(Q.8) =23 ( (DTE Re[Z1(Q, ®)] + i TE Im[Z (2, q»)]) (14)
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We use these expressions to write the intensity as
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Up to this point, we have ignored the sum over target and recoil nucleon helicites, A\; and Ay, respectively.
In order to simplify the expression further, we need to reintroduce the sum over helicity and note Eq. D5 of
the reference, which is derived from parity conservation:
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Here [E]E,?k are the partial wave amplitudes in the reflectivity basis for spin flip (K = 1) and spin non-
flip (k = O) at the nucleon vertex. When summing over helicities, the products of amplitudes of opposite
reflectivity vanish. Considering, for example, one of the coherent sums in the intensity, we can use this
cancellation to rewrite it as two coherent sums over partial waves of definite reflectivity for nucleon spin flip



and nucleon spin non-flip amplitudes (four coherent sums total):
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Finally we arrive at a formulation of the intensity that involves four coherent sums for each configuration
of nucleon spin:
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These expressions can be easily implemented into AMPTOOLS by absorbing a factor of /1 £ P, into the
definition of the amplitude. One would then fit for the [K]SL coeflicients in the four separate coherent sums,

where repeated [E]fjf;g are constrained to be the same using the constraint keyword in the AMPTOOLS

configuration file. The overall factor 2k is irrelevant as the intensity will be renormalized in the fitting
procedure. It would be useful to define an amplitude for the function Z;* with appropriate flags such that
the calcAmplitude function returns, as a complex double data type, the real or imaginary part of Z}* (which
is a purely real number).

Since there are no kinematic variables to distinguish between the spin flip (k = 1) and spin non-flip
(k = 0) amplitudes, it is anticipated that these two contributions to the intensity will result in an poorly
constrained fit. The contributions from two k values are not purely ambiguous since the coherent sums for
each k may contain a different set of interfering amplitudes depending that depends on k. Nevertheless, fit
instability seems highly likely for the general case where both £ = 0 and k = 1 is included for all amplitudes.
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