

K π simulation study for KLF $K_L p \rightarrow K^* p \rightarrow K^+ \pi^- p$

Shankar Adhikari Old Dominion University

Motivation

 $K\pi$ scattering enables direct investigations of scalar and vector K* states.

 K_0^* (800), K_0^* (1430), K_1^* (892), K_1^* (1410), K_2^* (1430), K_3^* (1780) ...

κ/ K₀* (800) light scalar meson. "needs confirmation" @PDG (since 2018).

K-long Facility

 Study of kpi scattering at KLF will support the existence of κ(800) and significantly improve on the uncertainties of determination of its mass and width

$K\pi$ Scattering Amplitude

... is dominant at low momentum transfer region (pion pole). S- wave: $\kappa(800), K_0^*(1430), \ldots$

P-wave: $K^*(892), K^*(1680), \ldots$

D-wave: $K_2^*(1430), \ldots$

???...at KLF, Does it reach down to pion pole

KLF will contribute significantly the world existed database for $K\pi$ scattering.

Event Generation

K_L beam generated

- assuming the K_L beam originates from Be target at 24 m upstream of glueX target.
- using momentum distribution provided by I. Larin.

$K\pi$ production: $K_L p \rightarrow K^+\pi^- p$

- Generated based on Regge model described in *Nucl.Phys.B10(1969) 151-168.*
- Developed by Maroune Baalouch
- More details can be found in the KLF proposal.

Beam Profile

Generation $K_L p \rightarrow K^*(892)p$

Generated Monte Carlo using Regge Model for $K_L p \to K^*(892)p \to K^+\pi^-p$

Four Momentum transfer (-t)

K-Long Facility and GlueX Detector

Reconstruction in GlueX detector

K_L momentum reconstruction:

- from time-of-flight between kaon time at "vertex" and time at Be target.

Flight_distance (L) = 2400 + vertex_z - 63.8 + Delta flight_time = Flight_distance/(c*beta_thrown) time_difference = k_vertex_time - flight_time; k_vertex_time: TOF time at vertex

Final State particle reconstruction $K_L p \rightarrow K^* p \rightarrow K^+ \pi^- p$

- K^+ , π^- and proton
- K^+ , π^- and (proton)

Well Reconstructed Kpi system in both cases; More stat for proton missing

Efficiency

With proton being detected, -t stop at 0.08 GeV²

-t reach to pion pole for the missing proton

Resolution

Proton detected

Four Momentum Resolution for $K_L p \rightarrow K^+ \pi^- p$ $K^{*}\pi^{\text{-}}$ Invariant Mass Resolution for $K_{L}p \rightarrow K^{*}\pi^{\text{-}}p$ <u>∆t</u> [%] (1/0.05 GeV²) ∞ 6 0 <u>∆m</u> [%] (1/0<u>.</u>08 Ge<u>V</u>/c²) 0.8 6 0.6 5 0.4 0.2 3 0 0.9 0.9 0.6 0.8 1.1 0.8 0.7 0.1 0.2 0.3 0.5 0.7 1 0 0.4 0.6 -t [GeV²] $M(K^{+}\pi^{-})$ [GeV/c²]

t is calculated using recoil proton and target

8

1.2

Resolution

 $K^{+}\pi^{-}$ Invariant Mass Resolution for $K_{\mu}p \rightarrow K^{+}\pi^{-}(p)$

Proton missing

Four Momentum Resolution for $K_L p \rightarrow K^+ \pi(p)$

t is calculated from beam and kpi system.

Missing mass of K+pi-

Missing mass of K+pi-

Missing mass at different beam momentum

Comparison with SLAC

- Two order of more statistics compared to previous SLAC measurement.

Amplitude Analysis: moment extraction (work in progress)

Amptools: binning on mass and -t

S- wave: $\kappa(800), K_0^*(1430), \dots$ P- wave: $K^*(892), K^*(1680), \dots$ D- wave: $K_2^*(1430), \dots$

Moments: projection of amplitudes

$$\begin{split} H(0,0) &= + 1 |S0|^2 + 1 |P0|^2 + 1 |P - |^2 + 1 |D0|^2 + 1 |D - |^2 + 1 |P + |^2 + 1 |D + |^2 \\ H(1,0) &= + 1.1547 Re(P0 * S0) + 1.0328 Re(D0 * P0) + 0.894427 Re(D - *P -) + 0.894427 Re(D + *P +) \\ H(1,1) &= + 0.816497 Re(P - *S0) - 0.365148 Re(D0 * P -) + 0.632456 Re(D - *P0) \\ H(2,0) &= + 0.4 |P0|^2 - 0.2 |P - |^2 + 0.894427 Re(D0 * S0) + 0.285714 |D0|^2 + 0.142857 |D - |^2 - 0.2 |P + |^2 + 0.142857 |D + |^2 \\ H(2,1) &= + 0.489898 Re(P - *P0) + 0.632456 Re(D - *S0) + 0.202031 Re(D - *D0) \\ H(2,2) &= + 0.244949 |P - |^2 + 0.174964 |D - |^2 - 0.244949 |P + |^2 - 0.174964 |D + |^2 \end{split}$$

Phys.Rev. D80 (2009) 072005

Angular distribution at GJ frame

Reconstructed distribution:

- data generated with Regge model, multiple exchanges : π, ρ, A_2, \dots [Nucl.Phys.B10(1969) 151-168]

-t dependent Moments

Conclusion

$K\pi$ simulation was performed using Geant4.

- Resolution look good enough for -t and $M(K^+\pi^-)$ for both missing and detected proton cases.
- Missing proton help to reach down to pion pole in the small -t region whereas detected proton in the final state, stop -t at 0.08 GeV²
- KLF could produce two order of more statistics compared to previous SLAC measurement.

$K\pi$ Scattering amplitude (work in progress)

- Amptools; Binning on -t and $M(K^+\pi^-)$
- Fit includes up to D-wave
- First few moments were extracted.

Back Up

M(K+pim) binned for t

Kpi production

Reconstruction detected proton

$K_L p \rightarrow K^{\star}(892)p$

$M(p\pi^{-})$ Vs -t

