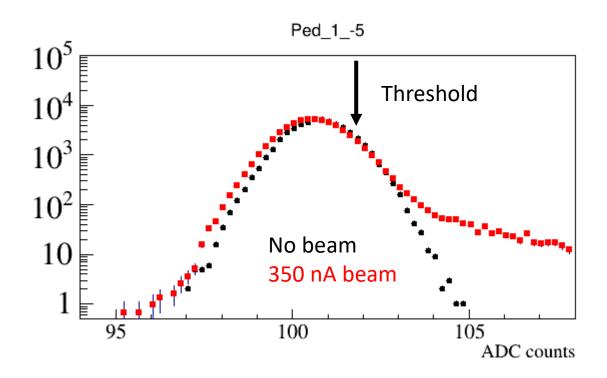


Estimates of the PMT Anode Current of the CCAL (FCAL2) Modules

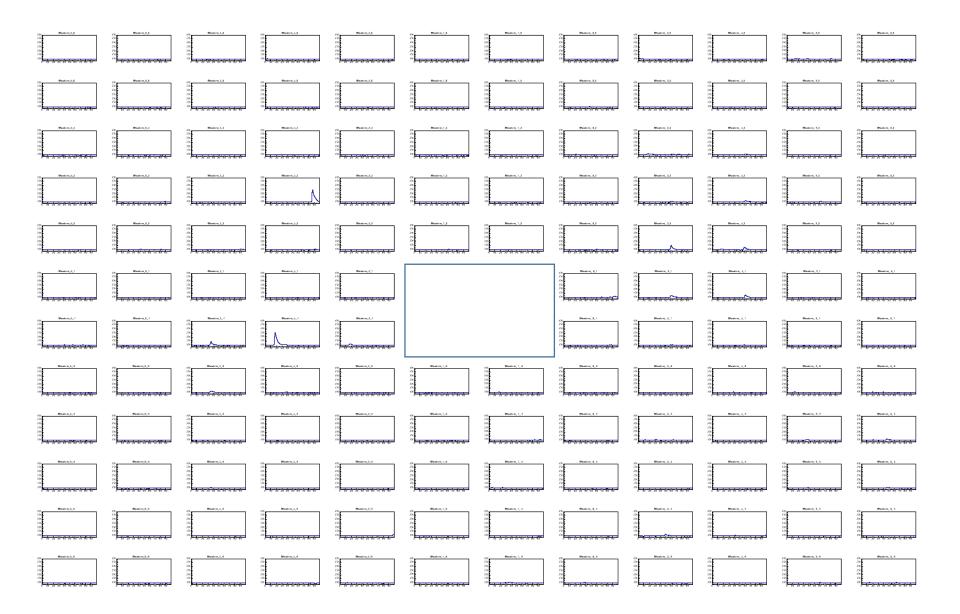
Alexander Somov, Jefferson Lab

23 February 2020


Motivation

- Estimate anode current of the FCAL 2 PWO insert
- decide on the required gain of the active base amplifier
- Measure PMT anode current for CCAL modules. Extrapolate measurements to the FCAL 2
- Perform measurements for two luminosities:
 - use JD70 105 (47 um) diamond radiator
 - 350 nA (GlueX II run conditions) and 200 nA electron beam currents

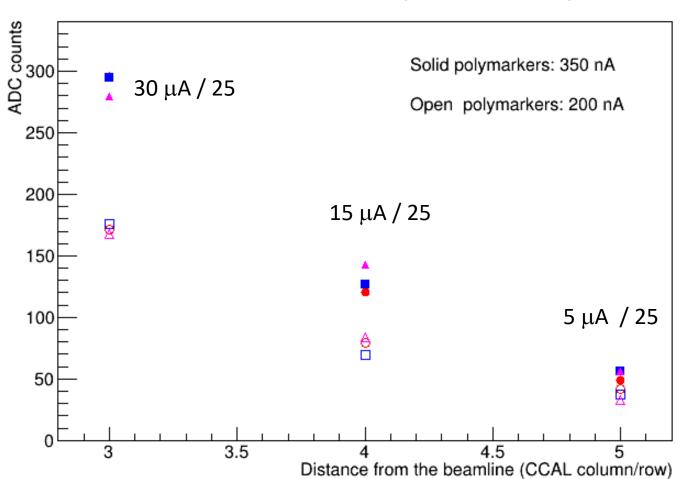
Analysis Overview


- Collect CCAL FADC waveforms using random and PS triggers
- no data sparsification (no threshold applied)
- estimate current using waveforms acquired with the random trigger
- Use PS trigger to monitor beam trips (time difference between trigger time stamps)
- Sum up FADC ampilitudes above the threshold (1 count above the baseline) in a 400 ns window (100 fadc samples)
- Estimate anode current as follows:

$$A = \frac{5 \cdot 10^{-4} V}{50 \ Om} \cdot \frac{\langle A(FADC) \rangle}{100 \ samples} \cdot \frac{1}{Gain(Amplifier)}$$

FADC Pedestals

CCAL FADC Waveforms



Sum of FADC Amplitudes in 400 ns Time Window

• FADC amplitude sums for modules in different CCAL layers

Sum of FADC Amplitudes in 400 ns Time Window

Sum of ADC channels (400 ns window)

Current seen by FADC in the 3^{rd} row: $30 \ \mu A$ Current through the divider: $30 \ \mu A / 25 = 1.2 \ \mu A$

Current estimates for FCAL:

- beam hole in the FCAL insert: 2x2 modules
- 1st layer covered by an absorber

- CCAL is positioned at Z $_{\rm CCAL}\,$ = 2 \cdot Z $_{\rm FCAL}\,$ (Z $_{\rm CCAL}\sim\,$ 12 m)

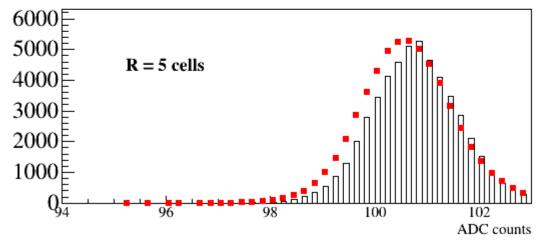
aperture: 4th CCAL layer corresponds to the 2nd FCAL layer solid angle: factor 4

FCAL current in the 3rd layer (1st after an absorber) if no amplifier used:
 5 x 4 = 20 μA

Discussion

• Can (probably) use active bases without dividers in all FCAL 2 insert modules except the 3 – 4 layers after the absorber. The amplification factor of 3 or 6 can be used for these modules

• 28 active bases were taken from the CCAL (all bases from layer 3 and 8 modules from layer 4). Gain of these dividers will be modified (coordinated with Fernando):


- 14 bases gain 3
- 14 bases gain 6

Modified bases will be reinstalled on CCAL and testes in March / April

Baseline Shift as a Function of Rate

- Amplifier in the active base is AC coupled
 expect some FADC baseline shift at high rate
- The shift depends on the rate

Note, if the amplifier is bypassed, the PMT Is DC coupled

- Checked the baseline shift at CCAL (350 μ A at the diamond radiator JD70-105)
- The shift is about 0.5 fadc counts in the 4th layer (0.1 count in the 5th layer)