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Abstract

This proposal presents our plan to make a precision measurement of the cross
section for γγ → π0π0 via the Primakoff effect using the GlueX detector in Hall D.
The aim is to significantly improve the data in the low π0π0 invariant mass domain,
which is essential for understanding the low-energy regime of Compton scattering on
the π0. In particular, the aim is to obtain a first ever experimental determination of the
neutral pion polarizability απ − βπ, which is one of the important predictions of chiral
perturbation theory and a key test of chiral dynamics on the π0. Our goal is to measure
σ(γγ → π0π0) to a precision of about 5.3%, which will determine the combination of
απ0 − βπ0 to a precision of 41%. We expect this experiment to run concurrently with
the previously approved experiment to measure the charged pion polarizability (CPP)
[1] in Hall D.
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1 Introduction

Electromagnetic polarizabilities are fundamental properties of composite systems such as molecules,

atoms, nuclei, and hadrons [2]. Whereas form factors provide information about the ground state

properties of a system, polarizabilities provide information about the excited states of the system,

and are therefore determined by the system’s dynamics. Measurements of hadron polarizabilities

provide an important test point for Chiral Perturbation Theory, dispersion relation approaches, and

lattice calculations. Among the hadron polarizabilities, the neutral pion polarizability is important

because it tests fundamental symmetries, in particular chiral symmetry and its realization in QCD.

Indeed, the non-trivial (non-perturbative) vacuum properties of QCD result in the phenomenon of

spontaneous chiral symmetry breaking, giving rise to the Goldstone boson nature of the pions. In

particular, the Goldstone boson nature of the π0 manifests itself most notably in its decay into γγ

and also in its electromagnetic polarizability, which according to ChPT can be predicted to leading

order in the expansion in quark masses.

Hadron polarizabilities are best measured in Compton scattering experiments where, in the

case of nucleon polarizabilities, one looks for a deviation of the cross section from the prediction

of Compton scattering from a structureless Dirac particle. In the case of pions, the long lifetime

of the charged pion permits experiments of low energy Compton scattering using a beam of high

energy pions scattering on atomic electrons. On the other hand, the short lifetime of the neutral

pion requires an indirect study of low energy Compton scattering via measurements of the process

γγ → π0π0, a method that can also be applied to the charged pion (CPP) and for which a proposal

in Hall D is already approved [1].

Measurements of hadron polarizabilities are among the most difficult experiments performed

in photo-nuclear physics. For charged hadrons, because of the Born term, the polarizability effect

in the cross section can range from 10 to 20% depending on the kinematics. For neutral hadrons,

where the Born term is absent, the polarizability effect will be much less than this. To set rea-

sonable expectations for what can be accomplished in a measurement of this type, it is important

to recognize that after 30 years of dedicated experiments using tagged photons at facilities across

North America and Europe, the error on the proton electric polarizability is 4%, without doubt

the paramount experimental achievement in this field. However, the error on the proton magnetic

polarizability is 16% [3]. Absolute uncertainties provide a better gauge of a measurements sensi-

tivity; for proton electric and magnetic polarizabilities the uncertainty in both is ±0.4× 10−4 fm3.

Another level of precision to consider for setting expectations is the result COMPASS obtained for

charged pion α − β. COMPASS provides also a Primakoff measurement. COMPASS achieved a

relative error of 46% in α−β and an absolute error of ±0.9×10−4 fm3. COMPASS cannot measure

the neutral pion polarizability.

This proposal presents a plan to make a precision measurement of the γγ∗ → π0π0 cross

section using the GlueX detector in Hall D. The measurement is based on the Primakoff effect
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which allows one to access the low Wπ0π0 invariant mass regime with the virtual photon γ∗ provided

by the Coulomb field of the target. The central aim of the measurement is to drastically improve

the determination of the cross section in this domain, which is key for constraining the low energy

Compton amplitude of the π0 and thus for extracting its polarizability. At present, the only accurate

measurements exist for invariant masses of the two π0s above 0.7 GeV, far above the threshold 0.27

GeV. The existing data at low energy were obtained in e+e− → π0π0 scattering in the early 1990’s

with the Crystal Ball detector at the DORIS-II storage ring at DESY [4].

Meanwhile, theory has made significant progress over time, with studies of higher chiral cor-

rections [5, 6, 7] and with the implementation of dispersion theory analyses which serve to make

use of the higher energy data [8, 9, 10, 11]. It is expected that the experimental data from this

proposal, together with these theoretical frameworks, will allow for the most accurate extraction

of the π0 polarizabilities to date.

2 Theoretical predictions for the neutral pion polariz-

ability

The low energy properties of pions are largely determined by their nature as the Goldstone Bosons

of spontaneously broken chiral symmetry in QCD, and are described in a model independent way

by the framework of Chiral Perturbation Theory (ChPT) (Gasser and Leutwyler [12]), which im-

plements a systematic expansion in low energy/momentum and in quark masses. In particular

the pions’ low energy electromagnetic properties can serve as tests of their Goldstone Boson (GB)

nature. One such a case is the π0 → γγ decay, which at the same time tests its GB nature and

the chiral anomaly. Another case is low energy Compton scattering on pions: at low energy the

Compton differential cross section can be expanded in powers of the photon energy and expressed in

terms of the corresponding pion charge form factor (for charged pion) and the electric and magnetic

polarizabilities, where the latter give the order ω2 terms in the Compton cross section, being ω the

photon energy. The polarizabilities appear as deviations of the pions from point like particles, and

thus result from carrying out the chiral expansion to the next-to-leading order. For both charged

an neutral pions the polarizabilities are fully predicted at leading order in quark masses, and thus

represent a sensitive test of chiral dynamics. For the charged pions, at O(p4) ChPT predicts that

the electric and magnetic polarizabilities (απ+ and βπ+) are related to the charged pion weak form

factors FV and FA in the decay π+ → e+νγ

απ+ = −βπ+ ∝ FA
FV

=
1

6
(l6 − l5), (1)

where l5 and l6 are low energy constants in the Gasser and Leutwyler effective Lagrangian [12].

Using recent results from the PIBETA collaboration for FA and FV [13], the O(p4) ChPT prediction
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for the charged pion electric and magnetic polarizabilities is given by:

απ+ = −βπ+ = (2.78± 0.1)× 10−4 fm3. (2)

Figure 1: Diagrams contributing to Compton scattering off the π0.

In the case of the neutral pion, the polarizabilities are determined by the one loop chiral

contributions (see Fig. 1) which are calculable, free of unknown parameters, and given only in

terms of the fine structure constant, the pion mass and the pion decay constant:

απ0 + βπ0 = 0

απ0 − βπ0 = − α

48π2MπF 2
π

' −1.1× 10−4 fm3 (3)

However, there is a range of predictions beyond NLO and the experimental test of these important

predictions is very challenging. In particular, the polarizabilities drive the very low energy regime

of Compton scattering on the π0 as there is no Thomson term, so one would expect that it would

be easier to determine them than in the charged pion case. However, direct Compton scattering on

the π0 is experimentally inaccessible due to its short lifetime, and therefore it is necessary to resort

to the process γγ → π0π0 of this proposal. In addition, ChPT indicates that the polarizabilities

are smaller in the case of the neutral pion, about a third of their value for the charged pion, i.e.

somewhere between −1.7×10−4 fm3 and −1.9×10−4 fm3, depending on the model used to estimate

higher order effects in the chiral expansion. The challenge is therefore to measure the cross section

for γγ → π0π0 with sufficient accuracy at low invariant mass Wππ so that one can infer the low-

energy Compton amplitude and extract the polarizabilities. The demand for accuracy is required in

order to allow for the extrapolation of the Compton amplitude from the kinematics of γγ → π0π0

to low energy Compton scattering, something that is at present impossible with the poor accuracy

of the only available data from the Crystal Ball experiment [4].
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For this purpose, the theoretical foundations have been laid in works studying γγ → π0π0 both

using ChPT (Bellucci et al [14, 5], Gasser et al [6], Aleksejevs and Barkanova [7]) and dispersion

theory (Oller and Roca [8], Dai and Pennington [9, 10], Moussallam [11]). In particular, in ChPT

at the next-to-next to leading order, which provides the higher order quark mass corrections to the

polarizabilities, some of the low energy constants need to be fixed and for that a significantly more

accurate measurement of the γγ → π0π0 cross section is needed than available presently.

Accurate measurements of the cross section near threshold combined with data for Wππ > 0.6

GeV will provide the necessary input for performing a full theoretical analysis, combining dispersion

theory with and without inputs from ChPT at low energy. This is a well established method which

has been used to analyze ππ scattering and also to the very problem of the γγ → π0π0 process,

where numerous works have been steadily improved the theoretical dispersive analysis, to mention

a few [15, 16, 8, 11, 17]. Through such an analysis it will be possible to determine, via combination

with ChPT, the low energy Compton amplitude and extract the combination απ − βπ. The latter

extraction represents a challenge as shown in Fig. 2, where the polarizabilities have a small direct

effect on γγ → ππ. Calculations by Dai and Pennington (Table II) [17] indicate that a 1.3%

determination of σ(γγ → π0π0) will determine the combination of απ0 − βπ0 to a precision of 10%.

In general, the determination of the accuracy one can get for απ − βπ based on a more accurate

measurement as the one proposed here is still an issue being currently studied theoretically, with

J. L. Goity and A. Aleksejevs and S. Barkanova forming a group to take a lead on the project. At

present a theoretical study based on the S-wave dominance below Wππ ∼ 0.8GeV and dispersion

theory has allowed to represent the two Compton amplitudes A and B in the physical domain of

the experiment. The study of the extrapolation to low energy Compton kinematics is under study,

in particular the issues related to the stability of the dispersive analysis. This study is expected to

provide a more accurate estimate on the sensitivity with which the experiment will allow for the

determination of the polarizability α− β.

3 Past Measurements

Past measurements of the γγ → π0π0 cross section are shown Fig. 3 and with theoretical curves in

Fig. 2. The data can be summarized as follows:

1. In the early 1990’s measurements were made in e+e− collisions at DESY with the Crystal

Ball detector at the DORIS-II storage ring [4], which are the only available data for Wππ <

0.6 GeV.

2. In 2008-2009, measurements were carried out by BELLE for 0.6 GeV < Wππ < 4.0 GeV

[18, 19, 20]. Two data sets were produced with different selection cuts on | cos θ∗|.

As mentioned above, several works have made use of dispersion theory methods (Oller and Roca [8],
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Problem with 
need for higher order in ChPT

γγ → π0π0

206 J.A. Oller et al. / Physics Letters B 659 (2008) 201–208

Fig. 5. Final results for the γ γ → π0π0 cross section. Experimental data are
from the Crystal Ball Collaboration. [1], scaled by 1/0.8, as | cos θ | < 0.8 is
measured and S-wave dominates. The solid line corresponds to CGL and the
dashed one to PY. The dot-dot-dashed line results after removing the axial vec-
tor exchange contributions. The band along each line represents the theoretical
uncertainty. The dotted line is the one loop χPT result [4,5] and the dot-dashed
one the two loop calculation [6].

T I=0
I (s − iε) = T I=0

II (s + iε). Then, Eq. (3.6) can be rewrit-
ten as

(3.7)F̃0(s) = F0(s)
(
1 + 2iρ(s)T I=0

II (s)
)
.

Around the σ pole, sσ ,

(3.8)T I=0
II = g2

σππ

sσ − s
, F̃0(s) =

√
2
gσγ γ gσππ

sσ − s
,

with gσππ the σ coupling to two pions such that Γ =
|gσππ |2β/16πM , for a narrow enough scalar resonance of
mass M . Notice as well the

√
2 factor in F̃0(s) to match with

the gσππ normalization used (the so-called unitary normaliza-
tion [42–44]). Then from Eqs. (3.7) and (3.8) it follows that

(3.9)
g2

σγ γ

g2
σππ

= −1
2

(
β(sσ )

8π

)2

F0(sσ )2.

Let us stress that this equation gives the ratio between the
residua of the S-wave I = 0 γ γ → ππ and ππ → ππ am-
plitudes at the σ pole position.

In order to derive specific numbers for the previous ratio in
terms of our dispersive approach one needs to introduce sσ . We
take two different values for sσ = (Mσ − iΓσ /2)2. From the
studies of unitary χPT [42–45] one has Mσ and Γσ around the
interval 425–440 MeV. The other values that we will use are
from Ref. [46], Mccl

σ = 441+16
−8 MeV and Γ ccl

σ = 544+18
−25 MeV,

where the superscript ccl indicates, in the following, values that
employ the σ pole position of Ref. [46]. The corresponding ra-
tios of the residua given in Eq. (3.9) are:
∣∣∣∣
gσγ γ

gσππ

∣∣∣∣ = (2.10 ± 0.25) × 10−3, sσ from Ref. [45],

(3.10)
∣∣∣∣
gσγ γ

gσππ

∣∣∣∣ = (2.06 ± 0.14) × 10−3, sσ from Ref. [46].

Both numbers are very similar despite that the imaginary parts
of the two s

1/2
σ differ by ∼ 20%. The result of [17], with which

we shall compare our results later, corresponds to the ratio in
Eq. (3.10) being 20% bigger at (2.53 ± 0.09)× 10−3 with sσ of
Ref. [46].

These ratios of residua at the σ pole position are the well
defined predictions that follow from our improved dispersive
treatment of γ γ → (ππ)I . However, the radiative width to γ γ

for a wide resonance like the σ , though more intuitive, has ex-
perimental determinations that are parameterization dependent.
This is due to the non-trivial interplay between background and
the broad resonant signal. An unambiguous definition is then
required [17,19]. We employ, as in Ref. [17], the standard nar-
row resonance width formula in terms of gσγ γ determined from
Eq. (3.9) by calculating the residue at sσ ,

(3.11)Γ (σ → γ γ ) = |gσγ γ |2
16πMσ

.

Nevertheless, the determinations of the radiative widths from
this expression and those from common experimental analyses
can differ substantially. The following example makes this point
clear.

From Ref. [45] one obtains |gσππ | = 2.97–3.01 GeV, corre-
sponding to the square root of the residua of the I = 0 S-wave
ππ amplitude, as in Eq. (3.8). If similarly to Eq. (3.11), one
uses the formula,

(3.12)Γσ = |gσππ |2β(Mσ )

16πMσ
,

the resulting width lies in the range 309–319 MeV, that is
around a 30% smaller than Γσ & 430 MeV from the pole po-
sition of Ref. [45]. This is due to the large width of the σ

meson which makes the |gσππ | extracted from the residue of
T I=0

II , Eq. (3.8), be smaller by around a 15% than the value
needed in Eq. (3.12) to obtain Γσ & 430 MeV. Similar effects
are then also expected in order to extract Γ (σ → γ γ ) from
the Eq. (3.11). Equations similar to this are usually employed
in phenomenological fits to data, e.g. see Ref. [47], but with
|gσγ γ | determined along the real axis. As a result of this dis-
cussion, one should allow a (20–30)% variation between the
results obtained from Eq. (3.11) and those from standard exper-
imental analyses that still could deliver a γ γ → ππ amplitude
in agreement with our more theoretical treatment for physical
values of s.

We shall employ the following values for |gσππ |. First we
take |gσππ | = 2.97–3.01 GeV [42–45]. With this value the re-
sulting two photon width from Eqs. (3.10) and (3.11) is

(3.13)Γ (σ → γ γ ) = (1.8 ± 0.4) KeV.

We also consider a larger value for |gσππ | since Γ ccl
σ [46] is

larger by a factor ∼ 1.3 than Γσ from Ref. [45]. One value is

|gσππ |ccl(1) & |gσππ |
(

Γ ccl(σ → ππ)

Γ (σ → ππ)

)1/2

= (1.127 ± 0.022)|gσππ |
(3.14)= (3.35 ± 0.08) GeV.
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where the increase in uncertainty compared to (113) is due to
the ChPT uncertainty in (α2 −β2)

π0
. In the remainder of the

paper we will make use of the improved value (114) when
referring to the ChPT predictions for pion polarizabilities.
Note that, as expected given the results of Table 6, our sum-
rule value of (α2 − β2)

π±
is consistent with the first ChPT

number quoted in Table 4, but it is not consistent with the
larger number found when the LECs of [68] are taken as
input.

8.2 Total cross section

Before performing the analytic continuation to the σ pole,
we wish to make sure that the amplitude on the real axis
is reasonably well described—at least up to

√
t = 1 GeV,

which we assess to be the region which will influence the
analytic continuation to the σ pole. The results for the cross
section are depicted in Figs. 5 and 6. Below the matching
point, the results for the once- and twice-subtracted formu-
lation are provided for both ChPT and GMM polarizabil-
ities. The uncertainty due to ππ input, represented by the
grey band, is estimated by the variation between CCL and
GKPRY phases and proves to be very small. The low-energy
region is totally dominated by the Born terms in the charged
process, but it is very sensitive to the σ in the neutral reac-
tion. The prediction of the twice-subtracted dispersion rela-
tion is in especially good agreement with γ γ → π0π0 data
(see Fig. 6), with the level of agreement comparable to that
obtained in the coupled-channel fit of [32].

Above the matching point, we exploit the fact that the
cross section is dominated by the f2(1270), and thus can be
well approximated by employing a Breit–Wigner descrip-
tion of this resonance in hI=0

2,− (t) and putting all other partial
waves to zero. In this way, (108) alone yields a good descrip-
tion of the neutral cross section above the matching point.
In contrast, in the charged case an additional background
is necessary. As observed in [26], this can be most easily
achieved by adding the Born terms and the off-shell contri-
butions dropped in the transition from (107) to (108) back
into the charged-channel amplitude for h2,−(t). Moreover,
after the transition to the isospin basis, we add a constant
background phase to ensure matching with the ππ phase
below the matching point. However, if Cπ

f2
C

γ
f2

is chosen to
be negative, the mismatch of the phases is very small: we
find a correction of δcorr = −0.09 and δcorr = −0.04 in or-
der to obtain agreement with the CCL and GKPRY phases,
respectively.

Finally, we comment on the analyticity properties of the
partial waves at the matching point. As shown in the ap-
pendix of [52], the solutions in terms of Omnès functions
automatically fulfill continuity at the matching point, but
the derivative at tm is not determined. Therefore, in general,
strong cusps can occur at the matching point. For example, if

Fig. 5 (Color online) Total cross section for γ γ → π0π0 [6, 11] and
γ γ → π+π− [7–9] for |cos θ | ≤ 0.8 and |cos θ | ≤ 0.6, respectively

Fig. 6 (Color online) Total cross section for γ γ → π0π0 for
|cos θ | ≤ 0.8 in the low-energy region

the background in the charged reaction is dropped, the neu-
tral cross section above tm is still correctly reproduced, but
the input for the I = 0 component changes, which affects
the neutral cross section below tm: the result for |hI=0

2,− (t)|
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very low-energy region. This analysis favoured the follow-
ing value for the neutral pion polarisability difference:9

(απ0 − βπ0) = −(1.25 ± 0.16) · 10−4 fm3 (87)

while the charged polarisability difference was constrained
to lie in the range predicted by the two-loop calculation plus
resonance modelling of the LEC’s performed in Ref. [64].
The data favoured values in the lower part of that range

(απ+ − βπ+) " 4.7 · 10−4 fm3. (88)

Using the determinations (87), (88) for the couplings C̃V

gives the following values for the subtractions functions at
q2 = 0:

b0(0) = −(0.66 ± 0.20) GeV−2,

b2(0) = −(0.54 ± 0.14) GeV−2
(89)

(we have ascribed an error ±1.4 · 10−4 to the charged polar-
isabilities difference).

The result for the γ γ → π0π0 cross section derived from
our amplitudes using the values (89) for bI (0) is shown on
Fig. 8 and compared to the experimental measurements from
Refs. [54, 66]. Note that the cross section displays a cusp at√

s = 4m2
π+ , due to the π0 − π+ mass difference, which

was discussed in Ref. [67] using ChPT.

5.3 Case q2 %= 0: Fv
π , Fωπ , Fρπ form factors

In order to address the case with q2 %= 0 we must specify
the q2 dependence of the three form factors which enter

Fig. 8 Comparison of the γ γ → π0π0 cross sections using the am-
plitude Hn

++ as derived from Eq. (76) and Hn
+− = Hn,V

+− with experi-
ment. The influence of varying the polarisability difference απ0 − βπ0

is shown

9In the fit, the dipole and quadrupole polarisabilities of the π0 were
allowed to vary subject to the constraint that the combination 6(απ0 −
βπ0 )dipole + m2

π (απ0 − βπ0 )quadrupole is given by a chiral sum rule.

into the expression of the amplitude (76). They were defined
from the relevant matrix elements of the electromagnetic
current operator by Eqs. (27), (38). We will employ usual
phenomenological descriptions based on superposition of
Breit–Wigner-type functions associated with the light vector
resonances. We give some details on these in Appendix D.
The pion form factor, of course, is known rather precisely
from experiment. Some experimental data exist also for the
ωπ form factor in two kinematical regions surrounding the
peak of the ρ meson. The data in these two ranges are com-
patible with the simple model used except, possibly, in a
small energy region (see Appendix D for more details). The
Fρπ form factor, finally, is more difficult to isolate experi-
mentally than Fωπ , because of the width of the ρ. We used
the same type of modelling together with symmetry argu-
ments to fix the parameters.

5.4 Case q2 %= 0: subtraction functions

The values of b0(q2), b2(q2) when q2 %= 0 are a priori
not known and must thus be determined from experiment.
Given detailed experimental data on e+e− → γπ0π0 and
e+e− → γ ∗ → γπ+π−, one could determine these func-
tions for each q2 by performing a fit of the differential
dσ/ds cross sections. In practice, one expects that a sim-
ple parametrisation of q2 dependence should be adequate.
We adopted the following form, which involves two arbi-
trary parameters:

bn
(
q2) = bn(0)F

(
q2) + βρ

(
GSρ

(
q2) − 1

)

+ βω

(
BWω

(
q2) − 1

)
,

bc
(
q2) =bc(0) + βρ

(
GSρ

(
q2) − 1

)
+ βω

(
BWω

(
q2) − 1

)
(90)

with

F
(
q2) = 192π2 m2

π (J̄π (q2) − Ḡπ (q2))

q2 . (91)

The relation between b0, b2 and bn, bc is given in Eq. (78).
This form (90) is motivated by the discussion concerning
the chiral limit. Assuming that the parameters βρ , βω are
O(m2

π ) ensures that bn(q2), bc(q2) have the correct chiral
limit behaviour at q2 %= 0 as well as q2 = 0 (see Sect. 4.3).

We consider the experimental data in the region
√

s ≤
0.95 GeV where it is an acceptable approximation to ignore
the effect of inelasticity in ππ scattering. We also ignore the
effect of ππ rescattering in D or higher partial waves, since
the corresponding ππ phase-shifts are small in this region.
Note, however, that J ≥ 2 partial waves in the γ ∗ → γππ

amplitudes are not necessarily small, except very close to
the ππ threshold. They are included via HBorn

λλ′ (for charged
amplitudes) and HV

λλ′ . The results of performing fits to the
data of Refs. [4] and [5] are shown in Table 1 and illustrated

ı

Figure 2: Left panel: experimental status; right panel: results from the 1990 XBall experi-
ment. The lower panel shows the effect of π0 polarizabilities on the cross section (

√
s = Wππ)

[11] .

Dai and Pennington [17], and in particular Moussallam [11] who performed the dispersive analysis

where one of the photons has non vanishing virtuality, which is particularly important for our case.)

with those available data. In particular these methods give results for the cross section at small

Wππ, but the poor accuracy of the data in that region does not serve as a useful constraint that

could improve those analyses. On the other hand, the ChPT calculations carried out at NNLO

(Bellucci et al [14, 5] ) can only be fitted to the low Wππ data, and thus the uncertainty in the

determination of low energy constants is rather large. It is therefore expected that accurate data

at low Wππ < 0.6 GeV will have a very big impact on both theoretical approaches, which together

may allow for an accurate description of the low energy Compton amplitude, and for a first time

experimental determination of the polarizability.
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region.

4 Experimental conditions

The measurement of the neutral pion polarizability is expected to run concurrently with the exper-

iment to measure the charged pion polarizability (CPP) [1] in Hall D. Essentially all the optimiza-

tions for that experiment are expected to improve the sensitivity of this experiment also. We briefly

summarize the configuration for CPP, which is compared in Table 1 to nominal GlueX running.

The diamond radiator will be adjusted to set the coherent peak of the photon beam between

5.5 and 6 GeV. This enhances the polarization significantly and also the tagging ratio. The ex-

perimental target will be placed upstream of the nominal GlueX target by 64 cm (z=1 cm in the

Hall D coordinate system). These changes benefit the present experiment. In addition, the CPP

experiment will add multi-wire proportional chambers downstream for muon identification, but

these do not impact this measurement one way or another.

4.1 Expected signal

In order to estimate rates, resolution and acceptance due to the Primakoff reaction on lead,

γ208Pb → π0π0 Pb, we take the reaction process to be the same as for charged pion produc-

tion and given in Eq. 8 of the Proposal for the Charged Pion Polarizability experiment [1], which

is reproduced here for convenience:

d2σ

dΩππdWππ
=

2αZ2

π2

E4
γβ

2

Wππ

sin2 θππ
Q4

|F (Q2)|2σ(γγ → π0π0)(1 + Pγ cos 2φππ). (4)
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Table 1: Configuration of the CPP experiment compared to nominal GlueX. We propose
that this experiment run concurrently with CPP. Detectors not identified in the table are
assumed to be operated under the same conditions as in the nominal configuration.

Configuration GlueX I CPP/NPP

Electron beam energy 11.6 GeV 11.6 GeV
Emittance 10−8m rad 10−8m rad
Electron current 150 nA 20 nA
Radiator thickness 50µm 50 µm diamond
Coherent peak 8.4 – 9.0 GeV 5.5 – 6.0 GeV
Collimator aperture 5 mm 5 mm
Peak polarization 35% 72%
Tagging ratio 0.6 0.72
Flux 5.5-6.0 GeV 11 MHz
Flux 8.4-9.0 GeV 20 MHz
Flux 0.3-11.3 GeV 367 MHz 74 MHz
Target position 65 cm 1 cm
Target, length H, 30 cm 208Pb, 0.028 cm
Start counter nominal removed
Muon identification None Behind FCAL

The γγ cross section for charged pions has been substituted with the cross section for neutral

pions, namely σ(γγ → π0π0). In this expression, Ωππ is the solid angle in the laboratory frame

for the emission of the ππ system, Wππ is the ππ invariant mass, Z is the atomic number of

the target, β is the velocity of the ππ system, Eγ is the energy of the incident photon, F (Q2)

is the electromagnetic form factor for the target with final-state-interactions (FSI) corrections

applied,https://www.overleaf.com/project/5d5d22c3f2f2fe72b728c4e6 θππ is the lab angle for the

ππ system, φππ is the azimuthal angle of the ππ system relative to the incident photon polarization,

and Pγ is the incident photon polarization.1

The cross section for σ(γγ → π0π0) has been measured by the Crystal Ball Collaboration [4],

albeit with limited statistical precision. We have parameterized the cross section for Wππ < 0.8

GeV, which is of specific interest to this program as shown in Fig.4. Using this parameterization

and Eq.4, we can calculate the photoproduction cross section on lead, which is shown in Fig.5.

The integrated cross section is 0.30±0.05µb/nucleus. The uncertainty comes from the model

dependence and was obtained by comparing two different calculations using completely different

1The expression for the cross section in terms of invariant quantities can be found in Ref. [21].
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parameterizations for the nuclear form factor on lead, F (Q2). For reference, we note that the cross

section for charged pions (π+π−) production is 10.9µb, a factor of 30 larger.

The number of neutral-pion-Primakoff-signal events produced during 20 PAC days is shown in

Fig.6. The impacts of detector trigger, acceptance and resolution are discussed in the next section.
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Figure 6: Estimated production rate for γPb → π0π0 Pb as a function 2π mass. For this
calculation, it is assumed the detector has perfect resolution and has a linearly increasing
efficiency from zero at threshold up to 0.4 at 0.34 GeV (see top right of Fig. 13 ).

4.2 Detector resolution

The response of the GlueX detector to neutral pion Primakoff events was simulated using the

standard GlueX generation and reconstruction tools, but with the specific geometry for the CPP

experiment. The schematic of the detector configuration is shown in Fig. 7. The primary differences

between the standard GlueX geometry and CPP are summarized in Table 1. For this experiment,

the main differences include a) coherent peak position at 5.5-6 GeV and re-positioning of the

microscope to cover the coherent peak, b) solid 208Pb at z=1cm, and c) Start counter removed. For

the CPP experiment, the addition of muon identification chambers behind the FCAL is critical.

However, for neutral pions this addition plays no role because the photons are detected in the FCAL.
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The GEANT4 simulation,2 which is used for these studies, includes most changes except for the

addition of the muon chambers, which are not needed. In addition, the microscope geometry has

not been modified and we use the tagger hodoscope for that region in the simulation. The slightly

reduced energy of the hodoscope relative to the microscope has little impact and the gaps between

counters is ignored by simulating the tagged flux.
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Figure 7: Diagram of the GlueX detector including the additional muon chambers for the
CPP experiment.

The Primakoff signal was generated according to the cross section described in the previous

chapter, using the gen 2pi0 primakoff, which is a modified version of the CPP event generator. By

default, the production amplitudes are symmetrized between the two identical π0’s by AmpTools.

One hundred thousand events of Primakoff and nuclear coherent interactions (see Section 5.1) were

generated with Mππ <0.9 GeV. We used random triggers from run 304013 to add tagger accidentals

and random hits in the drift chambers. These events were fed to GEANT4 to track particles, and

subsequently processed using mcsmear to simulate the detector response. The simulated events

were then analyzed using the GlueX event filter to analyze the reaction γPb→ π0π0 with a missing

Pb nucleus and constraining the detected photon pairs to the π0 mass. Energy and momentum

conservation is imposed on the reaction as well as the requirement that all photons originate from

a common vertex (i.e. “vertex-P4”). The output of the reconstruction, both kinematically fit and

“measured” quantities, were available for inspection.

In the following we show various reconstructed quantities as well as estimated resolutions. The

distribution of generated photon energy and the unconstrained reconstructed momenta of the two

2The initial simulations used GEANT3 and show similar results.
3Run 30401 is a low-intensity run for GlueX, but represents considerably higher background than expected

for this experiment.
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pions are shown in Fig. 8. The missing mass, 2π mass and −t distributions are shown in Fig. 9. The
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Figure 8: Left: Generated photon energies. The increased rate near 5.5 GeV is due to tagger
accidentals. Center: Reconstructed momentum distribution of one π0. Right: Reconstructed
momentum distribution of the second π0.
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Figure 9: Left: Missing mass distribution minus the mass of the recoil nucleus. Center:
Kinematically fit 2π mass distribution. Right: Kinematically fit -t distribution.

reconstructed momentum relative to its generated value is shown in Fig.10. The central peak of

the kinematicall fit momentum is about 2%, similar to that for charged pions. However, there are

long uniform tails that will effect the final reconstruction. The resolution of the azimuthal angle,

φππ, between the production and the photon polarization planes is quite poor owing to the fact

that the pion pairs are produced at very shallow angles. Nevertheless it is sufficient to measure the

asymmetry due to the photon beam polarization. The resolution of the 2π invariant mass is shown

in Fig. 11, along with the resolution of Mandelstam −t, and the reconstructed time resolution. The

mass resolution is about 12 MeV.
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Figure 10: Left: Difference between measured and generated momentum. Center: Difference
between kinematically fit and generated momentum. The central peak has a width of about
2%. Right: Difference between the kinematically fit azimuthal angle φππ and its generated
value.
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Figure 11: Left: Difference between kinematically fit and generated 2π mass. The central
2π-mass σ is about 12 MeV. Center: Difference between kinematically fit and generated -t.
Right: Difference between kinematically fit and generated 2π polar angle. The resolution σ
of the reconstructed angle is 0.1 degrees.
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4.3 Trigger and acceptance

The Primakoff reaction will transfer all the energy of the beam into four photons, which are going

forward. All this energy will be deposited in the FCAL, except for leakage down the beampipe.

We expect a simple trigger with an energy threshold in the FCAL should have very high efficiency

for any events that can be reconstructed: the FCAL trigger with the total energy threshold around

1 GeV can be used. To estimate trigger rate we used the same method as for TOF trigger rate

[22] extracted from the dedicated runs with high random trigger frequency. We used FCAL total

energy greater than 1GeV deposited within 40 ns excluding the most inner FCAL layer as a trigger

condition. Fig. 12 shows the values for LH2 and “empty” target configurations. Since the proposed

lead target is 1.7 times thicker than LH2 target (in rad. lengths), we used “empty” target rate plus

the difference between LH2 and “empty” target rates scaled with the factor of 1.7. That gives the

value ∼9 kHz for 20 nA beam current.
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Figure 12: Estimated FCAL trigger rate for 1 GeV total energy threshold for LH2 (solid
squares) and “empty” (empty squares) targets.

The acceptance of the signal events can be determined by comparing the kinematically fit to
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Table 2: Comparison of backgrounds for the single π0 channel and the present study for
determination of the signal in the π0π0 channel. The relative backgrounds for this experiment
are expected to be smaller than those for the single π0 channel.

Integrated Fraction γ Pb→ π0 Pb γ Pb→ π0π0 Pb
(θ < 1.5 degrees) (This study)
Primakoff signal 1.0 1.0
Nuclear Coherent (NC) 0.39 0.38
Interference 0.12 0.17
γp→ ηp, BR(η → 3π0) – 0.16
Incoherent (IC) 0.02 0.06

the generated distributions. The generated and kinematically fit 2π mass, φππ and −t distributions

are shown in Fig. 13. The reconstruction was described in the previous section. The acceptance

is quite high at about 40%. However, there is also significant slewing due to resolution in most

variables of interest. The relatively poor resolution in φππ results in dilution of the measured

azimuthal dependence, which will need to be adjusted based on simulation. Finally the measured

−t resolution roughly reproduces the generated slope despite the smearing of high rate regions

down to low rate regions.

5 Backgrounds

We first classify the various backgrounds and then describe them in more detail one at a time.

The exclusive production of two pions at threshold is very poorly known experimentally, and

therefore there are large uncertainties in both the magnitude and the expected distributions of

the backgrounds. The major background comes from the f0(500) 0+ meson (also referred to as σ-

meson in the literature) that decays to two pions. The production mechanism is expected to be very

similar to single π0 0− production, since the final states are similar except for parity. Therefore,

we assume the relative background contributions in the single π0 reaction will be similar in our

experiment. The single-pion production distribution on a lead target measured by PRIMEX [24]

is shown in Fig 14. The relative contributions for π0 production are plotted in Fig. 15 as a function

of angle, highlighting the fact that the Primakoff process is very forward peaked. The integrated

fractions are also tabulated for θ < 1.5 degrees in Table 2 and compared to fractions used in this

study. Production inside the nucleus will tend to reduce hadronic backgrounds in the 2π case due

to absorption, but we take a conservative approach that absorption does not change the general

picture substantially.
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and kinematically fit −t distribution.
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upper limit of integration.

20



Figure 16: Sketch of coherent two-pion production. Left) Signal: Primakoff mechanism,
Right) Backgrounds: Other production mechanisms.

We have the following categories of backgrounds:

• Coherent production: In this case, the target remains intact. Generically, one may classify the

two-pion production according to the sketches in Fig. 16. The left-hand diagram represents

the exchange of a virtual photon with the nucleus, i.e. the Primakoff mechanism. This

mechanism is very long range, approximately 100 fm, and is affected minimally by the effects

of shadowing or absorption. This is the signal for the experiment and our goal is to determine

its cross section. The right-hand diagram represents the exchange of a strongly interacting

particle (or propagator) and effectively results in the production of pions at the surface of

the nucleus. We note that for the neutral pion production, pion exchange is not allowed

due to charge conjugation conservation, while in the charged pion case, single pion exchange

is related to the axial anomaly (γπ0 → π+π−). When the interaction leaves the nuclear

target intact, the reaction is referred to as “nuclear coherent” and this is our most important

background.

• Incoherent production: When the interaction produces two pions in the quasi-elastic scatter-

ing off a single nucleon, the scattered target usually fragments into particles that range out

in the target and are unobserved experimentally. This reaction occurs at larger −t and is in

general kinematically distinct from the signal. The π0π0 momentum relative to the photon

polarization plane does differentiate between the Primakoff and incoherent production.

• Any reaction that may be confused with the signal within the experimental resolution or

limited acceptance: An example of this type of reaction is Primakoff production of η mesons,

where the η → π0π0π0 is mis-reconstructed as a two-pion final state.

We note that two important backgrounds for the charged-pion polarizability experiment do

not contribute in this experiment: First, coherent ρ0 photo-production is absent in this experiment

because the ρ0 decay into the π0π0 channel is prohibited by I-spin conservation. Second, µ+µ−

production is also not a factor in the neutral pion case.
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5.1 Nuclear coherent background

The largest coherent background is from the f0(500)(JPC = 0++), and the f0(980) photo-production.

The width of the f0(980) is fairly narrow and does not contribute directly to the strength near

threshold. The f0(500) width is much broader, from threshold to 800 MeV, with significant over-

lap in the invariant mass region of interest. Since the f0(500) is a scalar particle with the same

spin-parity as the γγ → π0π0 final state near threshold, the azimuthal distribution of the π0π0 mo-

mentum relative to the photon polarization plane does not differentiate between coherent f0(500)

production and the Primakoff reaction. This is similar to the Primex-π0 experiment, where the

dominant background was nuclear coherent π0 photo-production. The approach used in the Primex

analysis was to measure the π0 angular distribution, effectively the t-distribution, then use theo-

retical calculations of the angular distributions to separate out contributions from Primakoff and

nuclear coherent. The analysis of the π0π0 (NPP) reaction will approximately mirror what was

done for the Primex-π0 analysis.

We parameterize the f0(500) meson as detailed in Appendix B and assume that the production

amplitude can be factorized as

A = At(t)AW (mππ)Aτ (Φ, φ, θ), (5)

where the last factor represents the angular distribution that results in a dependence on the di-

pion azimuthal angle, φππ, of the form Aτ ∝ (1 + P cos 2φππ). The mass dependence is given by

the S-wave phase shifts that dominate the mass region below 0.8 GeV. We use the approximate

description given in Appendix B.1.4

Figure 17: Left) Approximation to strong form factor for lead, Right) Figure 6 from Ref. [25]
showing the calculated strong form factor for single π0 production off a lead target.

4More detailed studies may require including contributions from the D-wave and S-wave, I=2, amplitudes.
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We assume the −t dependence of the f0(500) has a similar functional form as single π0 pro-

duction, namely At(t) ∝ sin θππ × Fst(t). The sin θππ comes from the spin-flip required at forward

angles to produce a 0+ system from a spin-zero target. The factor Fst(t) is the strong form factor

for the target, which is approximated to match calculations for the single π0 production (Fig. 6

from Ref.[25]). Our Gaussian approximation to the form factor is shown in Fig. 17 along side the

calculation for single π0 production. Efforts are underway to calculate the strong form factor for

this reaction.5. The Primex data showed that the nuclear coherent process is highly suppressed for

heavy nuclei, as shown in Fig.14. The reason for this suppression is π0 absorption in the nuclear

interior, making the coherent production primarily a surface effect. For NPP it is expected that

suppression of the nuclear coherent process will be approximately twice stronger than that seen in

Primex because two pions are produced in NPP as compared to a single π0 in Primex.

Figure 18 shows distributions of interest for a sample of Primakoff and nuclear coherent back-

ground events simulated in approximate proportion observed in single pion production. The strong

phase between the two production mechanisms is set to 75 degrees for this simulation, where an

angle of zero produces maximum interference. This angle must be determined experimentally. The

individual distributions are shown in the top panel: the 2π mass and the 2π scattering angle dis-

tributions. The Primakoff signal peaks at threshold and at about 0.2 degrees, whereas the nuclear

coherent signal rises from threshold as expected in f0(500) production and peaks at an angle of

about 0.75 degrees. The azimuthal angular distribution is the same for both signal and background

and has no discriminating power. The angular distributions of the pions in the center of mass of

the 2π system are all uniform, and as such do not help in distinguishing the signal from the nuclear

coherent.

5.2 Incoherent two-pion production

In addition to the coherent production of two pions off the nucleus, two pions may also be produced

via the elementary reaction γN → π0π0N , breaking up the nucleus in the process. We model the

incoherent background with a mass distribution given by the f0(500), but with an exponential t

dependence given by eBt, with B = 3.6 GeV−2. The slope is taken from Ref.[26] and has very

large uncertainties. However, as long as the slope is small compared to Primakoff production,

which has an effective slope of B ∼ 560 GeV−2, it does not change the picture. The mass and

angular dependencies are shown in Fig. 19. The strength is small at threshold and at small angles,

where Primakoff is strongest. The azimuthal angle is flat, so the photon polarization becomes an

important tool in discriminating against this background.

The cross section for this reaction on free protons is relatively large, about 140 nb/nucleon for

0.3 < Mππ < 0.8 GeV.6 However, this process is strongly suppressed in nuclei by Pauli blocking

5S. Gevorkyan, private communication.
6The cross section is estimated from the S-wave production of the f0(500) meson extrapolated to small
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Figure 18: Kinematic distributions for the Primakoff signal and nuclear coherent background.
Top left) Two-pi mass, Top right) Two-pi scattering angle, Bottom left) Two-pi azimuthal
angle, Bottom right) Polar angle of one pion in the 2π center-of-mass.
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Figure 19: Distributions for the incoherent production off free nucleons. The blue crosses
represent the generated distributions and the black crosses represent the accepted and kine-
matically fit distributions. Left) Two-pi mass. Center) Two-pi scattering angle. The drop of
the generated distribution at 1.5 degrees is due to an analysis cut. Right) Two-pi azimuthal
angle.

and by pion absorption. The Pauli suppression is proportional to 1−G(t), where G(t) is a nuclear

form factor and has the limit of G(t) → 1 as −t → 0 [25, 27]. In the case of single π0 produc-

tion, incoherent scattering contributes at the level of a couple of percent, and we expect it to be

suppressed more strongly in 2π production. See Appendix D for details. Therefore, we expect this

background to be about six times smaller than what is used in the present signal extraction studies.

5.3 Miss-identified backgrounds

There may be important backgrounds that are mistaken for the signal due to miss-identification.

These may include

(i) coherent production of η followed by η → π0π0π0 → γγγγ(γγ), where only four photons are

reconstructed.

(ii) production of nucleon resonances that contribute to the γN → Nπ0π0 final state. This

contribution is expected to be small based on the experience of other Primakoff experiments.

−t from data archived in the hepdata.net database and reported in Ref. [26]. See Appendix B for more
information. A factor of one half is applied to the measured cross section for π+π−.
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The first reaction is an inelastic, coherent process, and as such could produce a significant rate for a

heavy nuclear target. The kinematics of η production was investigated using the genEtaRegge event

generator [28]. This event generator has a fairly realistic description of η production on hydrogen,

including a contribution from the Primakoff reaction. However, it is missing the enhancement

provided from scattering off a heavy target. The η’s were generated with the standard event-

generator parameters and were decayed according to their nominal branching fractions. The events

were then processed as for the Primakoff signal through the GEANT4 MC and mcsmear. These

steps were followed by the reaction filter that analyzed the events assuming they are signal, i.e.

γPb → Pb π0π0 and a kinematic fit was performed assuming the recoil target nucleus is missing.

Standard missing-mass and χ2 cuts were used to pick out events that mimic the signal. The

distributions of the accepted events are shown in Fig.20. We have scaled the event rate for η

production on lead using the scaling rules described in Appendix D, resulting in ten times the rate

for Primakoff production of two pions (∼ Γη ×Br(η → π0)/Γσ).

We use a couple of very simple but powerful selection cuts to remove the η background. The

cuts include a selection on the missing mass squared (|MM −MPb
2| < 0.1 GeV2) and a cut on

the χ2 < 5 of the kinematic fit to γ Pb → π0π0(Pb) with a missing recoil. In the analysis we also

require a 2π scattering angle (θππ < 1.5 degrees), which further restricts the range of missing mass.

The result of these selections, which have been applied uniformly to signal and background, reduce

the contamination from this source to about 16% of the signal. These selections are illustrative

and will allow us to achieve our experimental goals but further optimizations are likely. We note
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that the absolute number of mis-identified η’s in our signal region can be determined empirically

from the measured rate of fully reconstructed η → π0π0π0 events.

5.4 Extraction of the Primakoff signal

The Primakoff signal is determined using an amplitude fit7 to all data simultaneously. It assumes

that the mass and angular distributions are known for each of the contributions to the 2π sample.

A complex scaling factor is determined for each contribution by doing an unbinned maximum

likelihood fit to the event sample. The result of such a fit to the sample that includes the Primakoff

and nuclear coherent processes only, is shown in Fig. 18. The fit to the data sample that also includes

both, incoherent and broken η’s, is shown in Fig. 21. The three kinematic quantities that are most

discriminating between the signal and background are the 2π mass Mππ, the 2π scattering angle

θππ and the azimuthal angle φππ. The fit uses all the kinematic information contained in the event

sample to determine the signal and background components that are present. As demonstrated in

the figure, a good fit is obtained to the data and the Primakoff signal is determined. The statistical

uncertainties as a function of Mππ are obtained directly from the fit (Top left plot in Fig. 21). We

estimate the systematic uncertainty (3%) in the extraction of the signal by varying the fraction of

the incoherent contribution in the sample.

5.5 Analysis of existing data

We investigated the challenges of reconstructing 2π0 final states with a missing recoil proton using

the 2017 GlueX data taken with a Hydrogen target and the 2019 PrimEx-Eta data with Beryllium

and Helium targets.

5.5.1 Hydrogen target

We selected and reconstructed events that matched the topology of the reaction γp → γγγγ (p)

with a missing proton. A kinematic fit was performed that conserved energy and momentum and

imposed a vertex constraint at z=65 cm (CL > 10−6). We note that even though the vertex was

fixed at 65 cm to perform the fit, the actual target extends from 50 to 80 cm. Several other nominal

selections were imposed to clean up the event sample, including no charged tracks and no missing

energy. No constraints were imposed on the π0 mass in order to study backgrounds. Accidental

background subtractions were performed to obtain the resulting mass distributions.

The invariant mass distributions of two photon pairs each show a strong π0 peak, as shown in

the top of Fig. 22. There are background events that fall under the two π0 peaks, which requires

7AmpTools, https://github.com/mashephe/AmpTools/wiki.
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Figure 21: Kinematic distributions for the Primakoff signal and nuclear coherent background.
Top left) Two-pi mass, Top right) Two-pi scattering angle, Bottom left) Two-pi azimuthal
angle, Bottom right) Polar angle of one pion in the 2π center-of-mass.
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further study, nevertheless, using the selection of photon pairs that reconstruct to the π0, we can

plot the 2π0 mass spectrum (bottom of Fig. 22). The mass spectrum has recognizable features, in

particular the prominent f2(1270) that decays to π0π0 85% of the time. The structure at Mππ ∼0.8

GeV appears too low for the f0(980) and is present in a location where the Crystal Ball data [4]

shows a low yield. The yield for Mππ <0.5 GeV is consistent within a factor of two of the relative

yield compared to the f2(1270 peak in the Crystal Ball data. This analysis demonstrates that these

neutral events can be analyzed in our detector under significant more challenging circumstances

than we anticipate for the Primakoff experiment. In particular, for the Primakoff experiment, we

will have a point nuclear target that will allow valid geometrical constraints and limit the amount

of missing momentum in the reaction. This will make the kinematic fitting more effective.

It is evident from top plot in fig. 22 that a cut on the invariant mass of one reconstructed π0

will reduce the background on the other π0 significantly. This is shown in fig. 23 where a cut on

the invariant of one π0 significantly reduces the background in the other while keeping the main

signal mostly undisturbed.
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Figure 23: Invariant mass of the two photon system with(red) and without(blue) a cut on
the invariant mass of the second pair of photons.

These photons are detected by the lead-glass calorimeter and are the main contribution to the

resolution of the reconstructed pi0 mass. A lead-tungstate calorimeter with a substantially better

energy resolution would yield a significant improvement in the signal to noise ration as the width

of the reconstructed π0 would be smaller by about a factor of 2.
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5.5.2 Helium and beryllium targets

The PrimEx-Eta experiment collected valuable data on light nuclear targets (4He and 9Be) in 2019.

Analysis of the two neutral pion system photoproduction on these nuclei gives a good estimation of

the main background sources, signal to background levels, and the Hall-D detector resolution for

the main kinematic variables of two neutral pion photoproduction process. The total PrimEx-Eta

luminosity corresponds to approximately one day on 5 % rad. len. beryllium target and 18 days on

a 4 % rad. len. helium target at 200 nA electron beam current and a 10−4 rad. len. thick amorphous

tagger radiator. The Beryllium target has a thickness of only 1.5 cm (compare to 30 cm liquid

Helium and Hydrogen targets), which allows constraining interaction point (important for the

neutral pions reconstruction without any additional vertex information from the tracking system).

First we identified the two neutral pion exclusive photoproduction process using the energy ratio of

two pions to the initial beam energy with the expected recoil energy subtracted. Fig. 24 shows this

distribution for pions detected in FCAL and time accidentals and out-of-target beam interaction

subtracted. We first required exactly four showers to be detected in FCAL and no extra showers
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Figure 24: Two neutral pion elasticity (energy ratio to the expected value for the exclusive
production) for the Beryllium target.

in BCAL and COMCAL, a minimum shower energy of 0.5 GeV, and no neutral signals in TOF.

The number of the signal events here is about 900, the width of the observed signal with pion

kinematic fit to the mass is about 3 %, and the signal to background ratio value is promising.

Fig. 25 shows two dimensional distribution of those events: elasticity vs invariant mass. One can

see the horizontal line of the exclusive production events and vertical line of Kshort → π0π0 decays,
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which are separated from each other. Presence of Kshort → π0π0 decays in the data is really

beneficial for the Primakoff analysis since it allows tuning the detector resolution in Monte-Carlo

and make an assessment of the level of this value agreement with the data, which is essential for

the successful cross-section fitting procedure and systematic uncertainty control.
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Figure 25: Two neutral pion elasticity (energy ratio to the expected value for the exclusive
production) vs invariant mass of two pions for the Beryllium target.

Including BCAL showers in the neutral pion reconstruction increases the acceptance (especially

for large invariant mass region) and number of observed events by an order of magnitude. For the

beryllium target this increases the number of exclusive events to ∼10 K and for the helium target

to ∼200 K events. Fig. 26 shows two π0 invariant mass distribution with the energy within 10%

of the expected for the exclusive production with BCAL included for low production angle events

(below one degree). The f2 meson peak is clearly seen. Fig. 27 shows elasticity distribution for both

helium and beryllium targets with BCAL reconstructions included (time accidentals and “empty”

target background subtracted).

To conclude this section, we wish to highlight the good detector resolution for two π0 pro-

duction kinematics variables, the presence of the calibration process (Kshort) in the data and

controllable level of backgrounds observed for light nuclear targets exposition.
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Figure 26: Two neutral pion invariant mass for the exclusive events (within 10% energy),
the Beryllium target and production angle below one degree.
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Figure 27: Two pion elasticity distribution with BCAL included in the analysis. ”Empty”
target and time accidentals are subtracted. Open histogram - Helium target, ∼200 K events
in the elastic peak; solid histogram - Beryllium target, ∼10 K events in the peak.
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Figure 28: GlueX PS acceptance extracted from TAC data analysis (blue points); red points
– Monte-Carlo simulation

6 Photon beam flux

6.1 Photon beam flux accounting with the GlueX pair spectrom-
eter

The photon beam flux can be directly extracted by analyzing the pair spectrometer (PS) data with

the thin beryllium converter installed in the beam in from of it. The absolute normalization of the

PS performed with the total absorption counter (TAC) during the dedicated run.

The systematics from the photon beam flux accounting by pair spectrometer is originated from

few main contributions: overall spectrometer calibration with TAC quality; accuracy of the Monte-

Carlo simulation of this process; long term stability of the spectrometer performance; and change of

conditions between low intensity beam (TAC calibration) and production intensity. There are few

other less significant contributions. GlueX PS acceptance [29] shown on Fig. 28. For the proposed

experiment PS magnetic field should be reduced to cover the beam energy range 5 − 6GeV . The

methodology and accuracy of the PS analysis is the same as in PrimEx-D experiment, currently

running in Hall-D, and has value ∼ 1− 1.5 % [30].
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6.2 Cross section verification with the exclusive single π0 photo-
production

The extracted cross section can also be normalized on or independently from PS analysis verified

with the π0 radiative decay width extraction. Fig. 14 shows exclusive single π0 photoproduction

yield at forward angle obtained by the PrimEx experiment and used for π0 radiative decay width

extraction.

The photon beam flux in PrimEx was 0.725× 1012 for 4.9-5.5 GeV bremsstrahlung spectrum

part on 5% rad. len. lead target. The distance between calorimiter and target was ∼ 7.3m and

the central square part of the calorimeter, used in analysis was ∼ 70 × 70 cm. These conditions

have to be compared with the proposed experiment conditions: 20 days of 107 collimated beam

photon/sec (i.e. 20 times more than PrimEx lead target beam flux), the distance between target and

FCAL ∼ 6.2m and active calorimeter part diameter ∼ 2m. The central hole with one calorimeter

modules layer around which should be excluded from the analysis for PrimEx case was ∼ 8× 8 cm

and for FCAL ∼ 20× 20 cm, which is decreasing FCAL acceptance at forward angle. Comparison

of these experimental conditions allows us expecting an order of magnitude higher exclusive single

π0 photoproduction statistics. Thus PrimEx statistical uncertainty for lead will be decreased from

∼ 2.5 % down to ∼ 1 %. For the systematical uncertainty, in PrimEx it was ∼ 2.1 % and has two

major contributions: yield extraction (∼ 1.6 %) and photon beam flux accounting (∼ 1.0 %). The

first contribution is partly statistically driven and reduces with increasing of statistics; and the

second one cancels out since it is the same photon beam flux for the single and double exclusive

π0 photoproduction. The main factors increasing systematics for the proposed experiment are:

the angular resolution of FCAL is about a factor of two worse than for PWO crystals used in

the PrimEx analysis; and the magnetic field is not swiping out charged background like it was

in PrimEx. As a result we can expect slightly worse systematical uncertainty than in PrimEx

and statistical precision of ∼ 1 %, i.e. total error 2.5 − 3.5 % for π0 radiative width extraction

(excluding absolute photon beam flux accounting, target number of atoms and partly FCAL trigger

efficiency contributions to the systematics which are canceling out). The expected total beam flux

uncertainty for such a normalization should also include the PrimEx total error of the π0 radiative

width, which was recently reported as 1.5% [24]. All this gives ∼ 3 − 4 % error for photon beam

flux from normalization to the re-extracted π0 radiative decay width.

6.3 Muon pair production

In addition to these normalization channels, production of muon pairs, which has a known cross

section, can be used as a measurement of photon flux. Since the experiment will be running

concurrently with the Charged Pion Polarizability (CPP) experiment, the photon flux on target

will be the same by definition. CPP plans to use muon pair creation by beam photons as its

35



Table 3: Uncertainties in the extraction of π0 polarizabilities απ0 − βπ0 .

Source Uncertainty

1 Statistical uncertainty 2.3 %
2 Flux normalization 1.5 %
3 Signal extraction 3.0 %
4 Detector acceptance and efficiency 3.5 %
5 Total systematic error 4.8%
6 Total error on cross section 5.3%
7 Projected error in α− β 41%

main normalization channel, and so those measurements will be available for normalization of the

neutral pion channel as well. In the case of CPP, the GlueX track finding and fitting efficiency will

have to be determined for muon pairs, but any systematic error in that determination will largely

cancel when applied to charged pion pairs. That will not be the case for the neutral pion channel

and will have to be taken into account when evaluating systematic errors due to this method of

normalization. In any case, muon pair production should provide a useful check on the other

methods mentioned above.

7 Errors and Sensitivity

We summarize the anticipated errors in the determination of the π0 polarizability. We assume 20

days of running on a 5% radiation length 208Pb target, 107 photons/s, and nominal acceptance

for π0π0. Table 3 summarizes the estimated statistical and systematic errors. In the following we

describe each of these contributions in detail:

1. Statistical uncertainty in extraction of the Primakoff signal as determined by the fit shown

in the top left plot in Fig. 21 (Section 5.4).

2. Flux normalization. We have several methods for determining the flux (Section 6). The

Primex-D experiment expects an uncertainty of 1.5% and we use that as our estimate here.

3. Systematic uncertainty in extraction of the signal. This contribution is estimated to be 3%

based on differences obtained in the Primakoff signal by varying the amount of background

contributions (Section 5.4).

4. Detector acceptance and efficiency. We can measure the detector acceptance times efficiency

for the process γPb → π0Pb with an accuracy of 3.5% (Section 6.2), which should allow us
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to reduce the systematic uncertainty in the acceptance calculation for the process of interest

to this level.

5. Total systematic error (items 2-4): combining the systematic errors in quadrature gives 4.8%.

6. Error on cross section (quadrature sum of items 1 and 5): 5.3%.

7. The current estimate by Dai and Pennington (Table II in Ref. [17]) indicates that a 13%

determination of σ(γγ → π0π0) will determine the combination απ0 − βπ0 to a precision

of 100%, i.e., ∆(απ0 − βπ0) ∼ 7.7∆(σ) . From here we estimate that our uncertainty on

∆(απ0 − βπ0) ∼ 41%. We note that the basis for extracting the polarizabilities may be

improved in the near future and theoretical effort is being directed specifically toward this

goal.

Table 4: Approved beam request and running conditions for CPP. NPP would run concur-
rently.

Running condition
Days for production running 20
Days for calibrations 5
Target 208Pb
Photon intensity in coherent peak 107 photons/s
Edge of coherent peak 6 GeV

8 Summary and beam request

We have investigated the possibility of determining the neutral pion polarizabilities απ0 − βπ0 , a

quantity for which there are no existing measurements. Our proposal is to extract the polariz-

ability from a measurement of the cross section of the Primakoff reaction γPb → π0π0Pb. We

propose to make this measurement using data taken simultaneously with the CPP[1] experiment

in Hall D. Table 4 summarizes the approved beam request for the CPP experiment. The existing

GlueX detector has sufficient resolution and high acceptance for this process. We expect to collect

approximately 1800 signal events during the approved 20 PAC days. The anticipated uncertainties

on the signal represent a significant improvement over existing data as shown in Fig. 29. Using

the estimate by Dai and Pennington [17] we expect to be able to make the first extraction of the

απ0 − βπ0 polarizability with an uncertainty of 41%.
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A More on theoretical predictions

The scattering amplitude for γγ∗ → π0π0 is given in terms of the Compton tensor, whose low

energy expansion in the Compton scattering channel γπ0 → γπ0 is given in terms of the electric

and magnetic polarizabilities of the π0. For the case of interest with one real photon, the Compton

tensor is given in by two amplitudes, namely:

Tµν = −(A(s, t, u) +
1

4
B(s, t, u))(

1

2
s gµν − kνqµ) (6)

+
1

4s
B(s, t, u)((s− q2)p−µp−ν − 2(k · p− qµp−ν + q · p−kνp−µ − gµνk · p− q · p−) (7)

Here s = W 2
ππ is the invariant mass squared of the two π0s, k the momentum of the beam

photon, q the momentum of the virtual photon, and p− the p− = p1− p2 the momentum difference

between the two pions.

The limit of interest for the polarizabilities is:

απ = − α

2Mπ
(A(s, t, u)− 2

s
M2
πB(s, t, u))|s=0,t=u=M2

π

βπ =
α

2Mπ
A|s=0,t=u=M2

π
(8)

where απ βπ are the electric and magnetic polarizabilities respectively.

The low energy limit is analyzed in ChPT. At the lowest significant order, i.e., one loop, the

π0 polarizabilities are entirely given in terms of known quantities, namely:

απ0 = −βπ0 = − α

96π2MπF 2
π

' −0.55× 10−4 fm3 (9)

The positive magnetic susceptibility indicates that the π0 is diamagnetic, and naturally the negative

electric polarizability tells that it behaves as a dielectric.

There are higher order corrections in the chiral expansion to the above prediction corresponding

to a two-loop calculation, which is undefined up to two low energy constants h± in the notation of

Ref. [5], expected to be significant for the corrections.

The amplitudes A and B are constrained by unitarity and analiticity to satisfy dispersion

relations. In particular below s ∼ 0.8 GeV2 the dominant contributions are for the pair of pions in

an S-wave. The rather well established S-wave phase shifts thus allow for implementing dispersion

relations [15, 8, 11, 9, 10, 17]. In this proposal the model by Donoghue and Holstein [15] for

implementing the dispersive representation using S-wave final state interaction was adopted. The

model implements twice subtracted dispersion relations for the isospin 0 and 2 components of the
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amplitude A with the addition of t- and u-channel resonance exchanges for both A and B. The four

subtraction constants require the experimental input of the cross section to be measured by the

proposed experiment.

A summary of useful theory results is the following:

1) representation of the Compton amplitudes:

s A(s, t, u) = −2

3
(f0(s)− f2(s)) +

2

3
(p0(s)− p2(s))− s

2

∑
V=ρ,ω

RV (
t+M2

π

t−M2
V

+
u+M2

π

u−M2
V

)

B(s, t, u) = −1

8

∑
V=ρ,ω

RV (
1

t−M2
V

+
1

u−M2
V

)

RV =
6M2

V

α

Γ(V → πγ)

(M2
V −M2

π)3
(10)

where V = ρ, ω,

pI(s) = fBorn
I (s) + pAI (s) + pρI(s) + pωI (s)

pA0 (s) = pA2 (s) =
Lr9 + Lr10

F 2
π

(
s+

M2
A −M2

π

β(s)
log

1 + β(s) + sA/s

1− β(s) + sA/s

)
pρ0(s) =

3

2
Rρ

(
M2
ρ

β(s)
log

1 + β(s) + sρ/s

1− β(s) + sρ/s

)
pρ2(s) = 0

pω0 (s) = −1

2
pω0 (s) = −1

2
Rω

(
M2
ω

β(s)
log

1 + β(s) + sω/s

1− β(s) + sω/s
− s
)
, (11)

where β(s) =

√
s−4M2

π
s , MA the mass of the A1 resonance. The fIs are given by the dispersive

representation:

fI(s) = pI(s) + ΩI(s)

(
cI + dI s−

s2

π

∫ ∞
4M2

π

pI(s
′)Im(Ω−1

I (s′))
ds′

(s′ − s)s′2

)
, (12)

with the Omnès function:

ΩI(s > 4M2
π) = eiφI(s) exp

(
s

π

∫ ∞
4M2

π

φI(s
′)− φI(s)
s′ − s

ds′

s′
+
φI(s)

π
log

4M2
π

s− 4M2
π

)
. (13)

the phases φI are related to the corresponding ππ S-wave phase shifts according to:

φ0(s) = θ(M −√s)δ0
0(s) + θ(

√
s−M)(π − δ0

0(s))

φ2(s) = δ2
0(s), (14)
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where M is the mass of the f0 resonance.

The values used for the parameters entering the representations above are:

Lr9 + Lr10 = 1.43± 0.27× 10−3

si = 2(M2
i −M2

π)

Rω = 1.35/GeV2; Rρ = 0.12/GeV2 (15)

and the ππ phase shifts are well approximated up to
√
s ∼ 1.5 GeV by the parametrization:

δI0(s) = arcsin

 ΓI

2

√
(
√
s−MI)2 +

Γ2
I

4

+

N∑
n=0

an (
√
s)n (16)

where we include one single resonance for each I = 0, 2.

For the available data we need only up to N = 3 for I = 0, with the result:

M0 = 0.994 GeV; Γ0 = 0.0624 GeV

a0 = −1.439; a1 = 6.461/GeV; a2 = −5.529/GeV2; a3 = 2.022/GeV3 (17)

For the case I = 2 one finds that the resonance term is not needed at all and a good fit is provided

with N = 3 with the result:

a0 = −0.878; a1 = −0.611/GeV; a2 = −0.083/GeV2; a3 = 0.115/GeV3 (18)

The γγ → π0π0 in the S-wave approximation valid up to about
√
s ∼ 0.9 GeV is given by:

σγγ→π0π0(| cos θ| < Z)(s) =
πα2

EM

s2

Z

2

√
s(s− 4M2

π) (19)

× (| A(s)s−M2
πB(s) |2

+
1

s2

(
M4
π −

1

16
(
Z2

3
s(4M2

π − s) + 4(s− 2M2
π)2)

)
| B(s) |2)

Fitting to the Cristal Ball data[4] the parameters c0, d0, c2, d2 can be estimated, giving in the

corresponding units:

c0 = −0.529

d0 = −2.033

c2 = 0.953

d2 = −1.271. (20)
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B Parameterization of the nuclear coherent produc-

tion

We consider the reaction γA → mππA, where mππ → ππ is a dipion system. The 2π system is

treated as a particle with mass mππ, which is produced with four-momentum transfer t. The cross

section for a three-body final state can be written as [31]:

dσ =
1

4F dφ3 |A|2 (21)

F = pcmγ
√
s (22)

dφ3 =
4

(4π)5

pcmσ√
s
dΩcm

σ pσπdmππdΩσ
π (23)

dt

dΩcm
σ

=
dt

d cos θcmσ dφcmσ
=

2 pcmγ pcmσ
dφcmσ

(24)

The center-of-mass energy (cm) energy and the momentum transfer are represented by the com-

monly used variables s and t. Other variables are subscripted by particle name and their su-

perscripts indicate the reference frame. Thus pcmγ is the incident photon momentum, pcmσ is the

scattered momentum, and Ωcm
σ corresponds to the solid angle of the σ, all in the cm frame. The

momentum of the pions in the σ rest frame is denoted by pσπ and Ωσ
π denotes the solid angle of one

of them. Thus the cross section can be written as

dσ

dtdmππdφcmσ dΩσ
π

=
1

2(4π)5

pσπ
(pcmγ )2s

|
∑
i

Ai|2, (25)

where the index i runs over the number of resonances or mechanisms included in the calculation.

We will assume that we can parameterize each production amplitude as a factorized product

Ai = At(t)iAW (mππ)iAτ (Φ, φ, θ)i. (26)

For simplicity, we will drop the superscript i since for the moment we are considering single produc-

tion mechanism. The function Aτ (φππ, φπ, θπ) contains the angular dependence of the produced

pions, where (θπ, φπ) are the decay angles in the rest frame of the 2π system, which is flat for

S-wave production. Azimuthal symmetry is broken by the photon polarization, where φππ is the

angle between the plane of photon polarization and the production plane. The amplitudes are given

by Eq. 41 and lead to a cross section dependence of the form Aτ ∝ (1 + P cos 2φππ).

The primary background in this mass region is given by the f0(500)(JPC = 0++) also called

the σ. The σ has the same angular structure as the Primakoff reaction and can only be identified

through its dependence on t and mππ. Our parameterization of the mass dependence for the σ

meson is described in Section B.1.
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We assume the −t dependence of the σ has a similar form as for single π0 production, namely

At(t) ∝ sin θππ×Fst(t). The sin θππ comes from the spin-flip required at forward angles to produce

a 0+ system from a spin-zero target. The factor Fst(t) is the strong form factor for the target,

which is approximated to match calculations for the single π0 production (Fig. 6 from Ref.[25]).

B.1 Parameterization of the s-wave amplitude

There is considerable strength in the 2π channel coming from s-wave production, which is due to

the now established f0(500) meson. It is also commonly referred to as the σ meson. We assume

the amplitude for σ production is governed by the ππ J=0, I=0 phase shifts. We parameterize the

mππ dependence as

AW (mππ) ∼ mππ

2k
sin δ0e

iδ0
(
α1 + α2m

2
ππ

)
+ cos δ0e

iδ0
(
α3 + α4m

2
ππ

)
, (27)

where δ0 is the s-wave phase shift for I = 0 and αi (i=1, 2, 3, 4) are empirical constants to be

obtained from data. The first term is due to “compact source” production of the pion pair (see Eq. 5

from Ref. [32]) and the second term is due to production due to an “extended source,” for example

pion rescattering (see Eq. 5 from Ref. [33] and Eq. 9 from Ref. [34]). We use the parameterization

for the s-wave phase shifts from Appendix D of Ref. [35]:8

tan δ0 =
2k

mππ

(
A0

0 +B0
0k

2 + C0
0k

4 +D0
0k

6
)(4m2

π − s0
0

M2
ππ − s0

0

)
, (28)

where we use the same notation as the reference with A0
0 =0.225, B0

0 =12.651 GeV−2, C0
0= -

43.8454 GeV−4, D0
0=-87.1632 GeV−6, and s0

0=0.715311 GeV2. We have converted the constants to

units of GeV and evaluated the parameters for a0
0 = 0.225m−1

π , and a2
0 = −0.0371m−1

π . These fits

are only valid below mππ < 0.9 GeV because they do not properly include the f0(980).

The empirical constants in Eq. 27 were determined by fitting |AW |2 to the S-wave contribution

to the photoproduction cross section9 measured by CLAS for Eγ = 3−3.8 GeV [26] for−t = 0.4−0.5

GeV2. The fits are for mππ = 0.3−0.95 GeV, which is our region of interest. All four parameters are

needed to obtain a good representation to the central values of the data, although the uncertainty

band in the data allow for a wide range of parameters. Assuming that the constants are real

and relatively independent of energy and −t, we take the average of the fitted constants for our

parameterization (α1 = 8.4± 1.4, α2 = −4.1± 2.2, α3 = 2± 1.1, α4 = 8± 1.1).

8See also Eq. 44 of Ref. [32].
9The data are available through the Durham HEP Databases, http://durpdg.dur.ac.uk/.
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C Angular distribution in the helicity basis

C.1 Photon density matrix in the helicity basis

The linear polarization of the photon can be expressed as (Ref.[36] Eq. 18-19):

ρ(γ) = 1
2I + 1

2
~Pγ · ~σ, where (29)

~Pγ = P(− cos 2φππ,− sin 2φππ, 0) (30)

and ~σ are the Pauli matrices. The angle φππ is the angle between the polarization vector of the

photon and the production plane and P represents the degree of linear polarization. Multiplying

out these factors gives the expression for the photon density matrix in the helicity frame as (Ref.[37]

Eq. 219):

ρε,ε′(γ) = 1
2

(
1 −Pe−2iφππ

−Pe2iφππ 1

)
(31)

C.2 Parity constraints

We consider the reaction a + b → c + d, where the spin of each particle is denoted by sj , their

helicity by λj and their intrinsic parity by ηj . If parity is conserved, there are relations between

amplitudes with opposite helicities, which are given in Jacob and Wick [38] Eq. 43 and Ref.[36]

Eq. 20 10 (see also Ref. [39] Eq. 4.2.3):

λaV λdλb
λc

=

(
ηcηd
ηaηb

)
(−1)sc+sd−sa−sb(−1)(λc−λd)−(λa−λb) −λaV −λd−λb−λc (32)

C.3 S-wave production

For the case of S-wave production of two pions via the f0(500) or σ meson off an spinless target we

have the following constraint:

λγV λZλZ
λσ

= εV 00
0 =

(
ηc+

−+

)
(−1)1(−1)−1 −εV 00

0 = −ηc −εV 00
0 (33)

For convenience, we have separated out the parity of the scattered state ηc. The 2π intensity

distribution (see Ref.[37] Eq. 220-223 and also Eqs. 264) is given by the following expression after

10We thank Adam Szczepaniak for clarifying the connection between these papers.
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dropping the superscripts related to the target helicities and collapsing the sums over external and

internal spins because both the target and resonance are 0+ objects:

I =
∑
εε′

εV0 Y
0

0 ρεε′
ε′V ∗0 Y

0∗
0 (34)

= 1
2 |Y 0

0 |2
(

1V0
−1V0

) ( 1 −Pe−2iφππ

−Pe2iφππ 1

)(
1V ∗0
−1V ∗0

)
(35)

= 1
2 |Y 0

0 |2
[
|1V0|2 − P 1V0

−1V ∗0 e
−2iφππ − P 1V ∗0

−1V0 e
2iφππ + |−1V0|2

]
(36)

Noting that 1V0 = −ηc −1V0, we obtain the following expression:

I = 1
4π |1V0|2 (1 + ηcP cos 2φππ) , (37)

where φππ is the angle of the polarization vector relative to the production plane. For the case of

σ production, ηc = +1, but for the case of π0 production we have the opposite sign, ηc = −1. For

the Primakoff production of π+π− in S-wave, ηc = (−1)(−1)(−1)0 = +1. See Ref. [1] Eq. 8.

The intensity distribution in Eq. 34 may be written in a more convenient form for use with

AmpTools, namely

I = (1−P
4 )|A+|2 + (1+P

4 )|A−|2 (38)

A± = Y 0
0 (1V0 ± −1V0 e

2iφππ) (39)

A± = Y 0
0

1V0 (1∓ ηc e2iφππ), (40)

which can be written more symmetrically taking advantage of an arbitrary phase as

A± = Y 0
0

1V0 (e−iφππ ∓ ηc eiφππ). (41)

D Scaling factors for Primakoff, nuclear coherent, and

nuclear incoherent cross sections

Fig. 14 shows 208Pb data from the PrimEx experiment [23]. NPP will run on the same target and

the same approximate incident beam energy, ≈ 6 GeV, as PrimEx. Using known analytical forms

for processes shown in the figure, known photo-nuclear cross sections, and estimates for nuclear

attenuation from the PrimEx 208Pb analysis, numerical factors can be calculated to scale the

Primakoff, nuclear coherent and nuclear incoherent cross sections seen in PrimEx to the conditions

for NPP. The modeling presented here does not take into account differing momentum transfers for

γA→ Aπ0π0 (NPP) versus γA→ Aπ0 (PrimEx), which has an important effect on the shape of the

cross section distributions as a function of t (or θ), primarily through the strong and electromagnetic

form factors.
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D.1 Scale factor for the Primakoff cross section

The standard equation for Primakoff π0 production is given by:

d2σPrimEx
dΩ

= Γπ0→γγ
8αZ2

M3
π

β3E4
γ

Q4
F 2
EM (Q2)sin2θ

where Γπ0→γγ = 7.7 eV is the π0 radiative width. The cross section for Primakoff ππ produc-

tion with Pγ = 0 is given by:

d2σNPP
dΩππdMππ

=
2αZ2

π2

E4
γβ

2

Mππ

sin2θ

Q4
F 2
EM (Q2)σ(γγ → ππ)

The equation can be reorganized so that its structure is similar to the standard Primakoff

equation:

d2σNPP
dΩππ

≈
[ 1

4π2

M2
ππ

β
σ(γγ → ππ)∆Mππ

]8αZ2

M3
ππ

β3E4
γ

Q4
F 2
EM (Q2)sin2θ

d2σNPP
dΩππ

≈ Γπ0π0→γγ
8αZ2

M3
ππ

β3E4
γ

Q4
F 2
EM (Q2)sin2θ

where Γπ0π0→γγ is the effective radiative width for π0π0 → γγ,

Γπ0π0→γγ =
[ 1

4π2

M2
ππ

β
σ(γγ → ππ)∆Mππ

]
Taking Mππ ≈ 0.4 GeV, ∆Mππ ≈ 0.4 GeV, and σ(γγ → π0π0) ≈ 10 nb gives,

Γπ0π0→γγ ≈ 42 eV

The ratio of Primakoff π0π0 production in width ∆Mππ to Primakoff π0 production is given

by,

d2σNPP
dΩdMππ

∆Mππ

/dσPrimEx
dΩ

≈
(

Γπ0π0→γγ

/
Γγγ

)
×
(
Mπ

/
Mππ

)3
≈ 0.2
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D.2 Scale factor for the nuclear coherent cross section

The nuclear coherent cross section for π0 photo-production is given by:

dσγA→Aπ0

dt
≈ ηA2dσγN→Nπ0

dt
F 2(t)

where η is the nuclear absorption factor for π0 production, A is the atomic mass number,

dσγN→Nπ0/dt is the π0 photo-production cross section on the nucleon, and F (t) is the nuclear

matter formfactor. The nuclear coherent cross section for π0π0 photo-production has a similar

form:

dσγA→Aπ0π0

dt
≈ η2A2d

2σγN→Nπ0π0

dtdMππ
∆MππF

2(t)

where d2σγ→Nπ0π0/dtdMππ is the π0π0 photo-production cross section on the nucleon. In

the near threshold region the dominant channel for π0π0 photo-production is the f0(500). Photo-

production cross sections for f0(500) have been measured in γp → π+π− at 3.6-3.8 GeV [26].

The s-wave t and Mπ+π− distributions are shown in Fig. 30, the former at Mππ = 0.4 GeV,

and the latter at t = 0.5GeV 2. Note that dσ2/dtdMπ+π− is relatively flat versus Mππ in the

threshold region. The relevant cross section for this analysis is dσ2/dtdMπ+π− ≈ 1.0µb/GeV 3 at

t→ 0, multiplied by an isospin factor of 1/2 for the f0(500) branching fraction to π0π0. This gives

dσγN→Nπ0π0/dtdMππ ≈ 0.5µb/GeV 2. The cross section for γp→ pπ0 at 6 GeV has been measured

at SLAC [40], with cross sections shown in Fig. 31: dσ/dt ≈ 1.5µb/GeV 2 at t → 0. Estimates

from the PrimEX 208Pb analysis give η ≈ 0.55. Using ∆Mππ = 0.4 GeV, the ratio of π0π0 nuclear

coherent photo-production in width ∆Mππ to π0 nuclear coherent photo-production is given by:

dσγA→Aπ0π0

dt

/dσγA→Aπ0

dt
≈ ηd

2σγN→Nπ0π0

dtdMππ
∆Mππ

/dσγN→Nπ0

dt
≈ 0.07

D.3 Scale factor for the nuclear incoherent cross section

The nuclear incoherent cross section for π0 photo-production is given by:

dσγA→π0

dt
≈ ηA

(
1−G(t)

)dσγN→Nπ0

dt
F 2(t)

and the nuclear incoherent cross section for π0π0 photo-production has a similar form:
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dσγA→π0π0

dt
≈ η2A

(
1−G(t)

)d2σγN→Nπ0π0

dtdMππ
∆MππF

2(t)

where G(t) is a Pauli suppression factor, with G(0)=1, and G(t) → 0 for t > kF where kF is

the nuclear Fermi momentum. The nucleon photo-production cross sections are identical to those

used in the estimation of the nuclear coherent cross section. The ratio of π0π0 nuclear incoherent

photo-production in width ∆Mππ to π0 nuclear incoherent photo-production is given by:

dσγA→π0π0

dt

/dσγA→π0

dt
≈ ηd

2σγN→Nπ0π0

dtdMππ
∆Mππ

/dσγN→Nπ0

dt
≈ 0.07

D.4 Summary

NPP will take data on the same target, 208Pb, and the same approximate incident beam energy,

≈ 6 GeV, as PrimEx. Using known analytical expressions for the Primakoff, nuclear coherent, and

nuclear incoherent cross sections, known photo-nuclear cross sections, and estimates for nuclear

attenuation from the PrimEx 208Pb analysis, numerical factors are calculated to scale the cross

sections seen in PrimEx to the conditions for NPP. Assuming Mπ0π0 ≈ 0.4 GeV, and a width

∆Mπ0π0 ≈ 0.4 GeV, the scale factors for Primakoff, nuclear coherent, and nuclear incoherent cross

sections are approximately ×0.2, ×0.07, and ×0.07, respectively.
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Figure 30: CLAS data for s-wave π+π− photoproduction on the proton at 3.2 < Eγ < 3.4
GeV [26].
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Fig. 4. Values of the effective a are plotted versus
[t ~
. The dashed line indicates the a(t) expected for

pure ~ exchange. The solid line is from the model of
Fr/yland.

pie, the solid curve shows the model of Frf(yland. '
As mentioned above, the fits do/dt-(s -M~e)'o '

provide a good representation of the data. To pro-
duce angular distributions at standard energies,
and as an average over the numerous individual
points, values of d&r/df were taken from these
straight-line fits at fixed values of Ee = 6, 9, lg,
and 15 GeV. The results are listed in Table I and
plotted in Fig. 5. The distributions show a "dip"
around t =—0.5 (GeV/c)', not changing much with
energy. The slight change from our earlier publi-
cations is due to the improved subtraction of the
Compton contribution. The extracted m' cross sec-
tion in the dip depends very critically on this cor-
rection. For example, at 15 GeV and t = -0.5
(GeV/c)', two-thirds of the observed yield is due
to Compton scattering. Whereas we earlier had to
rely upon a theoretical estimate for this correc-
tion, experimental values can now be used direct-
ly. It is important to note that the experimental
setup was nearly the same for the two experi-
ments, hence there are practically no systematic
errors attached to this correction. However,

O.ol

0 0.4 0.8
—t t(GeV/c) ]

l.2 l.6

Fig. 5. dc/dt in pb/(Gev/c)~ is plotted versus }t( for
incident photon energies of 6, 9, 12, and 15 GeV. The
dashed lines are only to guide the eye.

since the dip region at the highest energies is dif-
ficult to fit and requires such a large Compton
subtraction, we have made coincidence measure-
ments using the technique described in the next
section (but with unpolarized photons). Figure 6
shows coincidence yields across the hodoscope at
1V-GeV average photon energy and momentum
transfers both in the dip and on the secondary
maximum, where single-arm measurement is
fairly easy. It is clear that the / cross section
does not vanish at t = -0.5 (GeV/c)a, and in fact
the coincidence result is in very good agreement
with the single-arm results in Fig. 5.

TABLE I. da'/dt(p+ p x +p), pb/(GeV/c)'.

)t[, (GeV/c) Ep=6 GeV Ep=9 GeV Ep = 12 GeV Ep=15 GeV

0.1
0.15
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.1
1.38

1.13
0.86
0.67
0.34
0.130
0.078
0.095
0.122

+ 0.11
+ 0.06
+ 0.05
+ 0.04
+O.O14
+ 0.010
+ 0.012
+ 0.010

0.140 + 0.007
0.129 + 0.005
0.0849+ 0.0045

0.59 +0.07
0.47 +0.05
0.33 +0.04
0.138 +0.020
0.058 +0.008
0.039 +0.006
0.045 +0.008
0.054 +0.005
0.066 +0.013
0.063 +0.004
0.051 +0.003
0.0321+0.0024

0.37 + 0.05
0.30 + 0.04
0.20 + 0.03
0.073 + 0.013
0.033 +0.006
0.024 + 0.004
0.027 + 0.006
0.030 +0.003
0.038 +0.003
0.036 +0.003
0.027 + 0.002
0.0161+ 0.0013

0.22 +0.03
0.137 +0.020
0.045 +0.009
0.021 + 0.005
0.016 + 0.003
0.018 + 0.004
0.019 +0.003
0.024 + 0.003
0.0231+0.0025
0.0160+0.0013
0.0094 +0.0009

Figure 31: SLAC data for π0 photo-production on the proton [40].
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